European Radiology

, Volume 17, Issue 11, pp 2964–2968 | Cite as

Value of cine MRI for better visualization of the proximal small bowel in normal individuals

  • Michael R. Torkzad
  • Roberto Vargas
  • Chikako Tanaka
  • Lennart Blomqvist


While enteroclysis seems to be the most efficacious method in achieving bowel distension, enterographic methods have become widespread due to the unpleasantness of enteroclysis and the radiation involved with positioning the catheter. Cine images in MRI can be done without radiation. Our aim is to see if and how cine MR imaging can improve visualization of bowel loops by capturing them while distended. Ten healthy individuals were asked to drink up to 2,000 ml of an oral solution made locally over a 60-min period. Then they underwent MRI using coronal balanced fast field echo (b-FFE) covering small bowel loops. If the initial exam revealed collapsed bowel loops an additional 50 mg of erythromycine was given intravenously with the subject still in the scanner and then cine imaging was performed. The degree of distension of different segments of the small bowel was measured before and after cine imaging and compared. The distension score was significantly higher after addition of the cine images as well, being only significant for depiction of the duodenum and jejunum. Our preliminary study suggests that cine MRI can give better image depiction of the proximal small bowel in healthy volunteers, perhaps circumventing the need for enteroclysis in some cases. There is a need for validation of these results in patients with small bowel disease.


Small intestine Magnetic resonance imaging (MRI) Contrast media 


  1. 1.
    Masselli G, Casciani E, Polettini E, Lanciotti S, Bertini L, Gualdi G (2006) Assessment of Crohn’s disease in the small bowel: prospective comparison of magnetic resonance enteroclysis with conventional enteroclysis. Eur Radiol 16(21):2817–2827PubMedCrossRefGoogle Scholar
  2. 2.
    Gourtsoyiannis N, Papanikolaou N, Grammatikakis J, Papamastorakis G, Prassopoulos P, Roussomoustakaki M (2004) Assessment of Crohn’s disease activity in the small bowel with MR and conventional enteroclysis: preliminary results. Eur Radiol 14(6):1017–1024, JunPubMedCrossRefGoogle Scholar
  3. 3.
    Debatin JF, Patak MA (1999) MRI of the small and large bowel. Eur Radiol 9(8):1523–1534PubMedCrossRefGoogle Scholar
  4. 4.
    Gourtsoyiannis N, Papanikolaou N, Grammatikakis J, Prassopoulos P (2002) MR enteroclysis: technical considerations and clinical applications. Eur Radiol 12(11):2651–2658, NovPubMedGoogle Scholar
  5. 5.
    Maglinte DD, Lappas JC, Chernish SM, Sellink JL (1986) Intubation routes for enteroclysis. Radiology 158(2):553–554, FebPubMedGoogle Scholar
  6. 6.
    Maglinte DD (2006) Small bowel imaging–a rapidly changing field and a challenge to radiology. Eur Radiol 16(5):967–971, MayPubMedCrossRefGoogle Scholar
  7. 7.
    Rogalla P (2005) CT of the small intestine. Eur Radiol 15(Suppl 4):D142–D148, NovPubMedGoogle Scholar
  8. 8.
    Minowa O, Ozaki Y, Kyogoku S, Shindoh N, Sumi Y, Katayama H (1999) MR imaging of the small bowel using water as a contrast agent in a preliminary study with healthy volunteers. AJR Am J Roentgenol 173(3):581–582, SepPubMedGoogle Scholar
  9. 9.
    Ochsenkuhn T, Herrmann K, Schoenberg SO, Reiser MF, Goke B, Sackmann M (2004) Crohn disease of the small bowel proximal to the terminal ileum: detection by MR-enteroclysis. Scand J Gastroenterol 39(10):953–960, OctPubMedCrossRefGoogle Scholar
  10. 10.
    Patak MA, Froehlich JM, von Weymarn C, Ritz MA, Zollikofer CL, Wentz K (2001) Non-invasive distension of the small bowel for magnetic-resonance imaging. Lancet 358(9286):987–988, Sep 22PubMedCrossRefGoogle Scholar
  11. 11.
    Lauenstein TC, Vogt FM, Herborn CU, DeGreiff A, Debatin JF, Holtmann G (2003) Time-resolved three-dimensional MR imaging of gastric emptying modified by IV administration of erythromycin. AJR Am J Roentgenol 180(5):1305–1310, MayPubMedGoogle Scholar
  12. 12.
    Davies AR, Bellomo R (2004) Establishment of enteral nutrition: prokinetic agents and small bowel feeding tubes. Curr Opin Crit Care 10(2):156–161, AprPubMedCrossRefGoogle Scholar
  13. 13.
    Patole S, Rao S, Doherty D (2005) Erythromycin as a prokinetic agent in preterm neonates: a systematic review. Arch Dis Child Fetal Neonatal Ed 90(4):F301–F306, JulPubMedCrossRefGoogle Scholar
  14. 14.
    Romano S, De Lutio E, Rollandi GA, Romano L, Grassi R, Maglinte DD (2005) Multidetector computed tomography enteroclysis (MDCT-E) with neutral enteral and IV contrast enhancement in tumor detection. Eur Radiol 15(6):1178–1183, JunPubMedCrossRefGoogle Scholar
  15. 15.
    Borthne AS, Abdelnoor M, Rugtveit J, Perminow G, Reiseter T, Klow NE (2006) Bowel magnetic resonance imaging of pediatric patients with oral mannitol MRI compared to endoscopy and intestinal ultrasound. Eur Radiol 16(8):1870, AugCrossRefGoogle Scholar
  16. 16.
    Singer AJ, Richman PB, Kowalska A, Thode HC Jr (1999) Comparison of patient and practitioner assessments of pain from commonly performed emergency department procedures. Ann Emerg Med 33(6):652–658, JunPubMedGoogle Scholar
  17. 17.
    Carroll K (1998) Crohn’s disease: new imaging techniques. Baillieres Clin Gastroenterol 12(1):35–72, MarPubMedCrossRefGoogle Scholar
  18. 18.
    Rieber A, Nussle K, Reinshagen M, Brambs HJ, Gabelmann A (2002) MRI of the abdomen with positive oral contrast agents for the diagnosis of inflammatory small bowel disease. Abdom Imaging 27(4):394–399, Jul–AugPubMedCrossRefGoogle Scholar
  19. 19.
    Bernstein CN, Boult IF, Greenberg HM, van der Putten W, Duffy G, Grahame GR (1997) A prospective randomized comparison between small bowel enteroclysis and small bowel follow-through in Crohn’s disease. Gastroenterology 113(2):390–398, AugPubMedCrossRefGoogle Scholar
  20. 20.
    Schmidt S, Felley C, Meuwly JY, Schnyder P, Denys A (2006) CT enteroclysis: technique and clinical applications. Eur Radiol 16(3):648–660, MarPubMedCrossRefGoogle Scholar
  21. 21.
    Reittner P, Goritschnig T, Petritsch W, Doerfler O, Preidler KW, Hinterleitner T, Szolar DH (2002) Multiplanar spiral CT enterography in patients with Crohn’s disease using a negative oral contrast material: initial results of a noninvasive imaging approach. Eur Radiol 12(9):2253–2257, SepPubMedGoogle Scholar
  22. 22.
    Potthast S, Rieber A, Von Tirpitz C, Wruk D, Adler G, Brambs HJ (2002) Ultrasound and magnetic resonance imaging in Crohn’s disease: a comparison. Eur Radiol 12(6):1416–1422, JunPubMedCrossRefGoogle Scholar
  23. 23.
    Gourtsoyiannis NC, Grammatikakis J, Papamastorakis G, Koutroumbakis J, Prassopoulos P, Rousomoustakaki M, Papanikolaou N (2006) Imaging of small intestinal Crohn’s disease: comparison between MR enteroclysis and conventional enteroclysis. Eur Radiol 16(9):1915–1925, SepPubMedCrossRefGoogle Scholar
  24. 24.
    Minordi LM, Vecchioli A, Guidi L, Mirk P, Fiorentini L, Bonomo L (2006) Multidetector CT enteroclysis versus barium enteroclysis with methylcellulose in patients with suspected small bowel disease. Eur Radiol 16(7):1527–1536, JulPubMedCrossRefGoogle Scholar
  25. 25.
    Schmidt S, Lepori D, Meuwly JY, Duvoisin B, Meuli R, Michetti P, Felley C, Schnyder P, van Melle G, Denys A (2003) Prospective comparison of MR enteroclysis with multidetector spiral-CT enteroclysis: interobserver agreement and sensitivity by means of “sign-by-sign” correlation. Eur Radiol 13(6):1303–1311, JunPubMedGoogle Scholar
  26. 26.
    Prassopoulos P, Papanikolaou N, Grammatikakis J, Rousomoustakaki M, Maris T, Gourtsoyiannis N (2001) MR enteroclysis imaging of Crohn disease. Radiographics 21 Spec No:S161–S172, OctPubMedGoogle Scholar
  27. 27.
    Kuehle CA, Ajaj W, Ladd SC, Massing S, Barkhausen J, Lauenstein TC (2006) Hydro-MRI of the small bowel: effect of contrast volume, timing of contrast administration, and data acquisition on bowel distention. AJR Am J Roentgenol 187(4):W375–W385, OctPubMedCrossRefGoogle Scholar
  28. 28.
    Giovagnoni A, Fabbri A, Maccioni F (2002) Oral contrast agents in MRI of the gastrointestinal tract. Abdom Imaging 27:367–375, Jul–AugPubMedCrossRefGoogle Scholar
  29. 29.
    Ajaj W, Goyen M, Schneemann H, Kuehle C, Nuefer M, Ruehm SG, Goehde SC, Lauenstein TC (2005) Oral contrast agents for small bowel distension in MRI: influence of the osmolarity for small bowel distention. Eur Radiol 15(7):1400–1406, JulPubMedCrossRefGoogle Scholar
  30. 30.
    Borthne AS, Abdelnoor M, Hellund JC, Geitung JT, Storaas T, Gjesdal KI, Klow NE (2005) MR imaging of the small bowel with increasing concentrations of an oral osmotic agent. Eur Radiol 15(4):666–671, AprPubMedCrossRefGoogle Scholar
  31. 31.
    Ajaj W, Goehde SC, Schneemann H, Ruehm SG, Debatin JF, Lauenstein TC (2004) Oral contrast agents for small bowel MRI: comparison of different additives to optimize bowel distension. Eur Radiol 14(3):458–464, MarPubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt S, Chevallier P, Chalaron M, Bessoud B, Verdun FR, Frascarolo P, Schnyder P, Denys A (2005) Multidetector CT enteroclysis: comparison of the reading performance for axial and coronal views. Eur Radiol 15(2):238–246, FebPubMedCrossRefGoogle Scholar
  33. 33.
    Gourtsoyiannis N, Papanikolaou N, Grammatikakis J, maris T, Prassopoulos P. MR imaging of the small bowel with a true-FISP sequence after enteroclyis with water solution. Investigative radiology 35(12):707–711Google Scholar
  34. 34.
    Maccioni F, Bruni A, Viscido A, Colaiacomo MC, Cocco A, Montesani C, Caprilli R, Marini M (2006) MR imaging in patients with Crohn disease: value of T2- versus T1-weighted gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast agent. Radiology 238(2):517–530, FebPubMedCrossRefGoogle Scholar
  35. 35.
    Low RN, Sebrechts CP, Politoske DA, Bennett MA, Flores S, Snyder RJ, Pressman JH (2002) Crohn Disease with Endoscopic Correlation: Single-Shot Fast Spin-Echo and Gadolinium-enhanced Fat-suppressed Spoiled Gradient-Echo MR Imaging. Radiology 222(3):652–660.PubMedCrossRefGoogle Scholar
  36. 36.
    Maccioni F, Bruni A, Viscido A, Colaiacomo MC, Cocco A, Montesani C, Caprilli R, Marini M (2006) MR imaging in patients with Crohn disease: value of T2- versus T1-weighted gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast agent. Radiology 238(2):517–530, FebPubMedCrossRefGoogle Scholar
  37. 37.
    Smith AJ, Nissan A, Lanouette NM, Shi W, Guillem JG, Wong WD, Thaler H, Cohen AM (2000) Prokinetic effect of erythromycin after colorectal surgery: randomized, placebo-controlled, double-blind study. Dis Colon Rectum 43(3):333–337, MarPubMedCrossRefGoogle Scholar
  38. 38.
    Frossard JL, Spahr L, Queneau PE, Giostra E, Burckhardt B, Ory G, De Saussure P, Armenian B, De Peyer R, Hadengue A (2002) Erythromycin intravenous bolus infusion in acute upper gastrointestinal bleeding: a randomized, controlled, double-blind trial. Gastroenterology 123(1):17–23, JulPubMedCrossRefGoogle Scholar
  39. 39.
    Hawkyard CV, Koerner RJ. The use of erythromycin as a gastrointestintal agent in adult critical care: benefit versus risksGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Michael R. Torkzad
    • 1
    • 2
    • 3
  • Roberto Vargas
    • 1
    • 2
  • Chikako Tanaka
    • 1
    • 2
    • 3
    • 4
  • Lennart Blomqvist
    • 1
    • 2
    • 3
  1. 1.Department of Diagnostic RadiologyKarolinska University Hospital SolnaStockholmSweden
  2. 2.Karolinska University Hospital SolnaStockholmSweden
  3. 3.Karolinska InstitutetStockholmSweden
  4. 4.Department of RadiologyKeio University School of MedicineTokyoJapan

Personalised recommendations