Advertisement

European Radiology

, Volume 18, Issue 1, pp 87–102 | Cite as

Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

  • Thoralf Niendorf
  • Daniel K. Sodickson
Cardiac

Abstract

Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions.

Keywords

Cardiovascular MRI Parallel imaging Phased array technology Many-element coil arrays High field imaging 

Notes

Acknowledgements

The authors gratefully acknowledge Marcus Katoh, Gabi Krombach, Harald Kuehl, Karl Ruhl, Elmar Spuentrup, Maral Tilbian, and Jane F. Utting (RWTH Aachen, Aachen, Germany); Christoph Leussler, (Philips Research Lab, Hamburg, Germany); Ruud de Boer and Marc Kouwenhoven (Philips Medical Systems, Best, The Netherlands); Randy O. Giaquinto and Christopher J. Hardy (GE Global Research, Niskayuna, New York, USA); James Akao, Randy Duensing, and Diana Spencer (IN VIVO Corp., Gainsville, Fl, USA); Bernd Kühn (Siemens Medical Solutions, Erlangen, Germany), Sebastian Kozerke (Institute for Biomedical Engineering, University and ETH Zurich, and Gyrotools, Zurich, Switzerland), Bernd J. Wintersperger (University of Munich Hospitals, Munich, Germany); Thea Marie Niendorf and Anna Tabea Niendorf, all of whom kindly contributed technical support or other valuable assistance. Portions of the presented work were supported by a grant from the START programme (46/06 RWTH Aachen, Aachen, Germany).

References

  1. 1.
    Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, van Rossum AC, Shaw LJ, Yucel EK (2004) Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J 25(21):1940–1965PubMedCrossRefGoogle Scholar
  2. 2.
    Lima JA, Desai MY (2004) Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 44(6):1164–1171PubMedCrossRefGoogle Scholar
  3. 3.
    Spuentrup E, Botnar RM (2006) Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis. Eur Radiol 16(1):1–14PubMedCrossRefGoogle Scholar
  4. 4.
    Russo V, Renzulli M, La Palombara C, Fattori R (2006) Congenital diseases of the thoracic aorta. Role of MRI and MRA. Eur Radiol 16(3):676–684PubMedCrossRefGoogle Scholar
  5. 5.
    Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, Firmin DN (2005) Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol 15(10):2172–2184PubMedCrossRefGoogle Scholar
  6. 6.
    Bogaert J, Dymarkowski S (2005) Delayed contrast-enhanced MRI: use in myocardial viability assessment and other cardiac pathology. Eur Radiol 15(Suppl 2):B52–B58PubMedGoogle Scholar
  7. 7.
    Pons-Llado G (2005) Assessment of cardiac function by CMR. Eur Radiol 15(Suppl 2):B23–B32PubMedGoogle Scholar
  8. 8.
    Croisille P, Revel D, Saeed M (2006) Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside. Eur Radiol 16(9):1951–1963PubMedCrossRefGoogle Scholar
  9. 9.
    Krombach GA, Niendorf T, Gunther RW, Mahnken AH (2007) Characterization of myocardial viability using MR and CT imaging. Eur Radiol DOI  10.1007/s00330-006-0531-2
  10. 10.
    Zhang H, Czum JM, Prince MR (2005) Emerging functional MR angiographic techniques. Magn Reson Imaging Clin N Am 13(1):181–188PubMedCrossRefGoogle Scholar
  11. 11.
    Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ (1999) Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 212(2):579–587PubMedGoogle Scholar
  12. 12.
    Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M (2005) Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 54(2):476–480PubMedCrossRefGoogle Scholar
  13. 13.
    Slavin GS, Wolff SD, Gupta SN, Foo TK (2001) First-pass myocardial perfusion MR imaging with interleaved notched saturation: feasibility study. Radiology 219(1):258–263PubMedGoogle Scholar
  14. 14.
    Simonetti OP, Finn JP, White RD, Laub G, Henry DA (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199(1):49–57PubMedGoogle Scholar
  15. 15.
    Nayak KS, Cunningham CH, Santos JM, Pauly JM (2004) Real-time cardiac MRI at 3 Tesla. Magn Reson Med 51(4):655–660PubMedCrossRefGoogle Scholar
  16. 16.
    McLeish K, Kozerke S, Crum WR, Hill DL (2004) Free-breathing radial acquisitions of the heart. Magn Reson Med 52(5):1127–1135PubMedCrossRefGoogle Scholar
  17. 17.
    Santos JM, Cunningham CH, Lustig M, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM (2006) Single breath-hold whole-heart MRA using variable-density spirals at 3T. Magn Reson Med 55(2):371–379PubMedCrossRefGoogle Scholar
  18. 18.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38(4):591–603PubMedCrossRefGoogle Scholar
  19. 19.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962PubMedCrossRefGoogle Scholar
  20. 20.
    Jakob PM, Griswold MA, Edelman RR, Manning WJ, Sodickson DK (1999) Accelerated cardiac imaging using the SMASH technique. J Cardiovasc Magn Reson 1(2):153–157PubMedGoogle Scholar
  21. 21.
    Weiger M, Pruessmann KP, Boesiger P (2000) Cardiac real-time imaging using SENSE. SENSitivity Encoding scheme. Magn Reson Med 43(2):177–184PubMedCrossRefGoogle Scholar
  22. 22.
    Pruessmann KP, Weiger M, Boesiger P (2001) Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson 3(1):1–9PubMedCrossRefGoogle Scholar
  23. 23.
    Sodickson DK, McKenzie CA, Li W, Wolff S, Manning WJ, Edelman RR (2000) Contrast-enhanced 3D MR angiography with simultaneous acquisition of spatial harmonics: A pilot study. Radiology 217(1):284–289PubMedGoogle Scholar
  24. 24.
    Weiger M, Pruessmann KP, Kassner A, Roditi G, Lawton T, Reid A, Boesiger P (2000) Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 12(5):671–677PubMedCrossRefGoogle Scholar
  25. 25.
    Niendorf T, Sodickson DK (2006) Parallel imaging in cardiovascular MRI: methods and applications. NMR Biomed 19(3):325–341PubMedCrossRefGoogle Scholar
  26. 26.
    Hardy CJ, Darrow RD, Saranathan M, Giaquinto RO, Zhu Y, Dumoulin CL, Bottomley PA (2004) Large field-of-view real-time MRI with a 32-channel system. Magn Reson Med 52(4):878–884PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu Y, Hardy CJ, Sodickson DK, Giaquinto RO, Dumoulin CL, Kenwood G, Niendorf T, Lejay H, McKenzie CA, Ohliger MA, Rofsky NM (2004) Highly parallel volumetric imaging with a 32-element RF coil array. Magn Reson Med 52(4):869–877PubMedCrossRefGoogle Scholar
  28. 28.
    Sodickson DK, Hardy CJ, Zhu Y, Giaquinto RO, Gross P, Kenwood G, Niendorf T, Lejay H, McKenzie CA, Ohliger MA, Grant AK, Rofsky NM (2005) Rapid volumetric MRI using parallel imaging with order-of-magnitude accelerations and a 32-element RF coil array: feasibility and implications. Acad Radiol 12(5):626–635PubMedCrossRefGoogle Scholar
  29. 29.
    Niendorf T, Hardy CJ, Giaquinto RO, Gross P, Cline HE, Zhu Y, Kenwood G, Cohen S, Grant AK, Joshi S, Rofsky NM, Sodickson DK (2006) Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 56(1):167–176PubMedCrossRefGoogle Scholar
  30. 30.
    Wintersperger BJ, Reeder SB, Nikolaou K, Dietrich O, Huber A, Greiser A, Lanz T, Reiser MF, Schoenberg SO (2006) Cardiac CINE MR imaging with a 32-channel cardiac coil and parallel imaging: impact of acceleration factors on image quality and volumetric accuracy. J Magn Reson Imaging 23(2):222–227PubMedCrossRefGoogle Scholar
  31. 31.
    Kramer H, Schoenberg SO, Nikolaou K, Huber A, Struwe A, Winnik E, Wintersperger BJ, Dietrich O, Kiefer B, Reiser MF (2005) Cardiovascular screening with parallel imaging techniques and a whole-body MR imager. Radiology 236(1):300–310PubMedCrossRefGoogle Scholar
  32. 32.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210PubMedCrossRefGoogle Scholar
  33. 33.
    Kyriakos WE, Panych LP, Kacher DF, Westin CF, Bao SM, Mulkern RV, Jolesz FA (2000) Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP). Magn Reson Med 44(2):301–308PubMedCrossRefGoogle Scholar
  34. 34.
    Sodickson DK, McKenzie CA (2001) A generalized approach to parallel magnetic resonance imaging. Med Phys 28(8):1629–1643PubMedCrossRefGoogle Scholar
  35. 35.
    Yeh EN, McKenzie CA, Ohliger MA, Sodickson DK (2005) Parallel magnetic resonance imaging with adaptive radius in k-space (PARS): constrained image reconstruction using k-space locality in radiofrequency coil encoded data. Magn Reson Med 53(6):1383–1392PubMedCrossRefGoogle Scholar
  36. 36.
    Pruessmann KP, Weiger M, Bornert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46(4):638–651PubMedCrossRefGoogle Scholar
  37. 37.
    Madore B, Glover GH, Pelc NJ (1999) Unaliasing by fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 42(5):813–828PubMedCrossRefGoogle Scholar
  38. 38.
    Tsao J, Boesiger P, Pruessmann KP (2003) k–t BLAST and k–t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50(5):1031–1042PubMedCrossRefGoogle Scholar
  39. 39.
    Madore B (2004) UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression. Magn Reson Med 52(2):310–320PubMedCrossRefGoogle Scholar
  40. 40.
    Kellman P, Epstein FH, McVeigh ER (2001) Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 45(5):846–852PubMedCrossRefGoogle Scholar
  41. 41.
    Reeder SB, Wintersperger BJ, Dietrich O, Lanz T, Greiser A, Reiser MF, Glazer GM, Schoenberg SO (2005) Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 54(3):748–754PubMedCrossRefGoogle Scholar
  42. 42.
    Kellman P, McVeigh ER (2005) Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 54(6):1439–1447PubMedCrossRefGoogle Scholar
  43. 43.
    McDougall MP, Wright SM (2005) 64-channel array coil for single echo acquisition magnetic resonance imaging. Magn Reson Med 54(2):386–392PubMedCrossRefGoogle Scholar
  44. 44.
    Bodurka J, Ledden PJ, van Gelderen P, Chu R, de Zwart JA, Morris D, Duyn JH (2004) Scalable multichannel MRI data acquisition system. Magn Reson Med 51(1):165–171PubMedCrossRefGoogle Scholar
  45. 45.
    Niendorf T, Sodickson DK, McKenzie CA, Farrar N, Hardy CJ, Zhu Y, Kenwood G, Harsh MJ, Rofsky NM (2004) Massively accelerated comprehensive volumetric body imaging examinations with a 32-Channel MR-System. 12th Annual Meeting of the International Society of Magnetic Resonance in Medicine Kyoto, Japan, p 2249Google Scholar
  46. 46.
    Sodickson DK, Hardy CJ, Zhu Y, Giaquinto RA, Kenwood G, Niendorf T, Lejay H, McKenzie CA, Farrar N, Ohliger MA, Grant AK, Rofsky NM (2004) Twelve- to sixteen-fold accelerations of contrast-enhanced MR angiography using highly parallel MRI with a 32-element array. 12th Scientific Meeting of the International Society of Magnetic Resonance in Medicine Kyoto, Japan, p 703Google Scholar
  47. 47.
    Schmitt M, Potthast A, Sosnovik DE, Wiggins GC, Triantafyllou C, Wald LL (2007) A 128 channel receive-only cardiac coil for 3T. Proceedings of the 15th Scientific Meeting of the International Society of Magnetic Resonance in Medicine, Berlin, Germany, p 245Google Scholar
  48. 48.
    Hardy CJ, Cline HE, Giaquinto RO, Niendorf T, Grant AK, Sodickson DK (2006) 32-element receiver-coil array for cardiac imaging. Magn Reson Med 55(5):1142–1149PubMedCrossRefGoogle Scholar
  49. 49.
    Spencer D, Akao J, Duensing R, Grant AK, Niendorf T, Sodickson DK (2005) A 32-element cardiac receiver coil array parallel imaging. Proceedings of the 13th Annual Meeting of the International Society of Magnetic Resonance in Medicine Miami, Fl, USA, p 911Google Scholar
  50. 50.
    Lanz T, Kellman P, Nittka M, Greiser A, Griswold MA (2006) A 32 channel cardiac array optimized for parallel imaging. Proceedings of the 14th Scientific Meeting of the International Society of Magnetic Resonance in Medicine Seattle, Washington, USA, p 2578Google Scholar
  51. 51.
    Niendorf T, Schaeffter T, Kozerke S, Bhanniny R, Winkelmann R, Kouwenhoven M, Mazurkewitz P, Leussler C (2007) 32-element coil array for highly accelerated clinical cardiac MR imaging. Proceedings of the 15th Scientific Meeting of the International Society of Magnetic Resonance in Medicine Berlin, Germany, p 3859Google Scholar
  52. 52.
    Ohliger MA, Grant AK, Sodickson DK (2003) Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magn Reson Med 50(5):1018–1030PubMedCrossRefGoogle Scholar
  53. 53.
    Wiesinger F, Boesiger P, Pruessmann KP (2004) Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 52(2):376–390PubMedCrossRefGoogle Scholar
  54. 54.
    Weiger M, Pruessmann KP, Boesiger P (2002) 2D SENSE for faster 3D MRI. Magn Reson Mater Phy 14(1):10–19Google Scholar
  55. 55.
    Niendorf T, Sodickson D (2006) Acceleration of cardiovascular MRI using parallel imaging: basic principles, practical considerations, clinical applications and future directions. Rofo 178(1):15–30PubMedGoogle Scholar
  56. 56.
    Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM (2004) Field-of-view limitations in parallel imaging. Magn Reson Med 52(5):1118–1126PubMedCrossRefGoogle Scholar
  57. 57.
    Carroll TJ, Grist TM (2002) Technical developments in MR angiography. Radiol Clin North Am 40(4):921–951PubMedCrossRefGoogle Scholar
  58. 58.
    Grant AK, Sodickson DK, Pedrosa I, Morrin M, Farrar N, Niendorf T, McKenzie CA, Hardy CJ, Giaquinto RA, Joshi S, Rofsky NM (2005) Rapid volumetric body MRI: feasibility of assessment of highly accelerated parallel imaging for magnetic resonance urography. Proceedings of the 13th Annual Meeting of the International Society of Magnetic Resonance in Medicine Miami Beach, Florida, USA, p 1907Google Scholar
  59. 59.
    Fenchel M, Nael K, Deshpande VS, Finn JP, Kramer U, Miller S, Ruehm S, Laub G (2006) Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions. Invest Radiol 41(9):697–703PubMedCrossRefGoogle Scholar
  60. 60.
    Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36(3):345–351PubMedCrossRefGoogle Scholar
  61. 61.
    Hadizadeh DR, Gieseke J, Hoogeveen R, von Falkenhausen M, Meyer B, Urbach H, Schild HH, Willinek WA (2006) 4D Time-resolved angiography with CENTRA Keyhole (4D-TRAK) and SENSE using a total acceleration factor of 60 as compared with catheter angiography in patients with cerebral arteriovenous malformations at 3.0T. Seattle, WA, USA, p 807Google Scholar
  62. 62.
    Fenchel M, Requardt M, Tomaschko K, Kramer U, Stauder NI, Naegele T, Schlemmer HP, Claussen CD, Miller S (2005) Whole-body MR angiography using a novel 32-receiving-channel MR system with surface coil technology: first clinical experience. J Magn Reson Imaging 21(5):596–603PubMedCrossRefGoogle Scholar
  63. 63.
    Zenge MO, Vogt FM, Brauck K, Jokel M, Barkhausen J, Kannengiesser S, Ladd ME, Quick HH (2006) High-resolution continuously acquired peripheral MR angiography featuring partial parallel imaging GRAPPA. Magn Reson Med 56(4):859–865PubMedCrossRefGoogle Scholar
  64. 64.
    Niendorf T, Katoh M, Kuehl HP, Grawe H, Bunke J, Kouwenhoven M, Guenther RW (2006) Rapid assessment of cardiac function using 2D CINE SSFP imaging in conjunction with k–t BLAST and k–t SENSE. Proceedings of the 14th Annual Meeting of the International Society of Magnetic Resonance in Medicine Seattle, WA, USA, p 3593Google Scholar
  65. 65.
    Wintersperger BJ, Sincleair S, Runge VM, Dietrich O, Huber A, Reiser MF, Schoenberg SO (2007) Dual breath-hold magnetic resonance cine evaluation of global and regional cardiac function. Eur Radiol 17(1):73–80PubMedCrossRefGoogle Scholar
  66. 66.
    Katoh M, Spuentrup E, Buecker A, Kouwenhoven M, Bunke J, Guenther RW, Niendorf T (2006) Single breath-hold whole-heart 3D CINE imaging using kt-BLAST and kt-SENSE. Proceedings of the 14th Annual Meeting of the International Society of Magnetic Resonance in Medicine Seattle, WA, USA, p 1634Google Scholar
  67. 67.
    Fenchel M, Deshpande VS, Nael K, Finn JP, Miller S, Ruehm S, Laub G (2006) Cardiac cine imaging at 3 Tesla: initial experience with a 32-element body-array coil. Invest Radiol 41(8):601–608PubMedCrossRefGoogle Scholar
  68. 68.
    Di Bella EV, Parker DL, Sinusas AJ (2005) On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 54(5):1295–1299PubMedCrossRefGoogle Scholar
  69. 69.
    Niendorf T, Utting JF, Tilbian M, Krombach GK, Ruhl K, Kouwenhoven M, Mazurkewitz P, Leussler C, Spencer D, Duensing R (2007) Highly accelerated, millimeter in-plane resolution myocardial perfusion imaging using a 32-Channel 3.0 T System. Proceedings of the 15th Scientific Meeting of the International Society of Magnetic Resonance in Medicine Berlin, Germany, p 3618Google Scholar
  70. 70.
    Niendorf T, Saranathan M, Lingamneni A, Pedrosa I, Spencer M, Cline H, Foo TK, Rofsky NM (2005) Short breath-hold, volumetric coronary MR angiography employing steady-state free precession in conjunction with parallel imaging. Magn Reson Med 53(4):885–894PubMedCrossRefGoogle Scholar
  71. 71.
    Nehrke K, Bornert P, Mazurkewitz P, Winkelmann R, Grasslin I (2006) Free-breathing whole-heart coronary MR angiography on a clinical scanner in four minutes. J Magn Reson Imaging 23(5):752–756PubMedCrossRefGoogle Scholar
  72. 72.
    Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19):1992–2002PubMedGoogle Scholar
  73. 73.
    Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47(2):372–383PubMedCrossRefGoogle Scholar
  74. 74.
    Huber A, Bauner K, Wintersperger BJ, Reeder SB, Stadie F, Mueller E, Schmidt M, Winnik E, Reiser MF, Schoenberg SO (2006) Phase-sensitive inversion recovery (PSIR) single-shot TrueFISP for assessment of myocardial infarction at 3 tesla. Invest Radiol 41(2):148–153PubMedCrossRefGoogle Scholar
  75. 75.
    Katscher U, Bornert P, Leussler C, van den Brink JS (2003) Transmit SENSE. Magn Reson Med 49(1):144–150PubMedCrossRefGoogle Scholar
  76. 76.
    Zhu Y (2004) Parallel excitation with an array of transmit coils. Magn Reson Med 51(4):775–784PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Diagnostic RadiologyRWTH Aachen, University HospitalAachenGermany
  2. 2.Department of Radiology, Center for Biomedical ImagingNew York University School of MedicineNew YorkUSA

Personalised recommendations