Advertisement

European Radiology

, Volume 17, Issue 11, pp 2829–2837 | Cite as

Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT coronary angiography: comparison of multisegment and halfscan reconstruction approaches

  • Marc DeweyEmail author
  • Florian Teige
  • Michael Laule
  • Bernd Hamm
Cardiac

Abstract

The lower the heart rate the better image quality in multislice computed tomography (MSCT) coronary angiography. We prospectively assessed the influence of heart rate on per-patient diagnostic accuracy and image quality of MSCT coronary angiography and compared adaptive multisegment and standard halfscan reconstruction. A consecutive cohort of 126 patients scheduled to undergo conventional coronary angiography was examined with 16-slice CT. For all heart rate groups, per-patient diagnostic accuracy was significantly higher for multisegment than halfscan reconstruction with values of 95 vs. 79% (p < 0.05, <65 bpm, 38 patients), 85 vs. 66% (p < 0.05, 65–74 bpm, 47 patients), and 78% vs. 41% (p < 0.001, >74 bpm, 41 patients). Differences in diagnostic accuracy between adjacent heart rate groups were only significant for halfscan reconstruction for the comparison between the 65–74 and >74 bpm group (p < 0.05). The vessel lengths free of motion artifacts were significantly longer with multisegment reconstruction in all heart rate groups and for all coronary arteries (p < 0.005). For noninvasive MSCT coronary angiography, both per-patient diagnostic accuracy and image quality decline with increasing heart rate, and multisegment reconstruction at high heart rates yields similar results as standard halfscan reconstruction at low heart rates.

Keywords

Computed tomography Coronary vessels Sensitivity Cardiac Segmentation 

References

  1. 1.
    Garcia MJ, Lessick J, Hoffmann MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411PubMedCrossRefGoogle Scholar
  2. 2.
    Dewey M, Teige F, Schnapauff D, et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415PubMedGoogle Scholar
  3. 3.
    Hoffmann MH, Shi H, Schmitz BL, et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478PubMedCrossRefGoogle Scholar
  4. 4.
    Mollet NR, Cademartiri F, Nieman K, et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270PubMedCrossRefGoogle Scholar
  5. 5.
    Pugliese F, Mollet NR, Runza G, et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582PubMedCrossRefGoogle Scholar
  6. 6.
    Leschka S, Alkadhi H, Plass A, et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRefGoogle Scholar
  7. 7.
    Nieman K, Rensing BJ, van Geuns RJ, et al (2002) Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart 88:470–474PubMedCrossRefGoogle Scholar
  8. 8.
    Giesler T, Baum U, Ropers D, et al (2002) Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. AJR Am J Roentgenol 179:911–916PubMedGoogle Scholar
  9. 9.
    Cademartiri F, Mollet NR, Runza G, et al (2005) Diagnostic accuracy of multislice computed tomography coronary angiography is improved at low heart rates. Int J Cardiovasc Imaging:1–5Google Scholar
  10. 10.
    Martuscelli E, Romagnoli A, D’Eliseo A, et al (2004) Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J 25:1043–1048PubMedCrossRefGoogle Scholar
  11. 11.
    Ropers D, Baum U, Pohle K, et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666PubMedCrossRefGoogle Scholar
  12. 12.
    Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054PubMedCrossRefGoogle Scholar
  13. 13.
    Dewey M, Laule M, Krug L, et al (2004) Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 39:223–229PubMedCrossRefGoogle Scholar
  14. 14.
    Hoffmann U, Moselewski F, Cury RC, et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643PubMedCrossRefGoogle Scholar
  15. 15.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557PubMedCrossRefGoogle Scholar
  16. 16.
    Dewey M, Hoffmann H, Hamm B (2006) Multislice CT coronary angiography: effect of sublingual nitroglycerine on the diameter of coronary arteries. Fortschr Röntgenstr 178:600–604CrossRefGoogle Scholar
  17. 17.
    Dewey M, Müller M, Teige F, et al (2006) Multisegment and halfscan reconstruction of 16-slice computed tomography for assessment of regional and global left ventricular myocardial function. Invest Radiol 41:400–409PubMedCrossRefGoogle Scholar
  18. 18.
    Austen WG, Edwards JE, Frye RL, et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40PubMedGoogle Scholar
  19. 19.
    Dewey M, Rutsch W, Schnapauff D, Teige F, Hamm B (2007) Coronary artery stenosis quantification with multislice computed tomography. Invest Radiol 42:78–84PubMedCrossRefGoogle Scholar
  20. 20.
    Achenbach S, Giesler T, Ropers D, et al (2003) Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram-gated multislice spiral computed tomography. Invest Radiol 38:119–128PubMedCrossRefGoogle Scholar
  21. 21.
    Simel DL, Feussner JR, DeLong ER, Matchar DB (1987) Intermediate, indeterminate, and uninterpretable diagnostic test results. Med Decis Mak 7:107–114CrossRefGoogle Scholar
  22. 22.
    Begg CB, Greenes RA, Iglewicz B (1986) The influence of uninterpretability on the assessment of diagnostic tests. J Chronic Dis 39:575–584PubMedCrossRefGoogle Scholar
  23. 23.
    Knottnerus JA, Muris JW (2003) Assessment of the accuracy of diagnostic tests: the cross-sectional study. J Clin Epidemiol 56:1118–1128PubMedCrossRefGoogle Scholar
  24. 24.
    Hoffmann MH, Shi H, Manzke R, et al (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234:86–97PubMedCrossRefGoogle Scholar
  25. 25.
    Greuter MJ, Dorgelo J, Tukker WG, Oudkerk M (2005) Study on motion artifacts in coronary arteries with an anthropomorphic moving heart phantom on an ECG-gated multidetector computed tomography unit. Eur Radiol 15:995–1007PubMedCrossRefGoogle Scholar
  26. 26.
    Hamoir XL, Flohr T, Hamoir V, et al (2005) Coronary arteries: assessment of image quality and optimal reconstruction window in retrospective ECG-gated multislice CT at 375-ms gantry rotation time. Eur Radiol 15:296–304PubMedCrossRefGoogle Scholar
  27. 27.
    Grosse C, Globits S, Hergan K (2007) Forty-slice spiral computed tomography of the coronary arteries: assessment of image quality and diagnostic accuracy in a non-selected patient population. Acta Radiol 48:36–44PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson TR, Nikolaou K, Wintersperger BJ, et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415PubMedCrossRefGoogle Scholar
  29. 29.
    Flohr TG, McCollough CH, Bruder H, et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  30. 30.
    Achenbach S, Ropers D, Kuettner A, et al (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography-initial experience. Eur J Radiol 57:331–335PubMedCrossRefGoogle Scholar
  31. 31.
    Scheffel H, Alkadhi H, Plass A, et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747PubMedCrossRefGoogle Scholar
  32. 32.
    Leber AW, Knez A, von Ziegler F, et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154PubMedCrossRefGoogle Scholar
  33. 33.
    Mollet NR, Cademartiri F, van Mieghem CA, et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRefGoogle Scholar
  34. 34.
    Ropers D, Rixe J, Anders K, et al (2006) Usefulness of multidetector row spiral computed tomography with 64- × 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 97:343–348PubMedCrossRefGoogle Scholar
  35. 35.
    Leschka S, Wildermuth S, Boehm T, et al (2006) Noninvasive coronary angiography with 64-section CT: Effect of average heart rate and heart rate variability on image quality. Radiology 241:378–385PubMedCrossRefGoogle Scholar
  36. 36.
    Leschka S, Husmann L, Desbiolles LM, et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16(9):1964–1972PubMedCrossRefGoogle Scholar
  37. 37.
    Salem R, Remy-Jardin M, Delhaye D, et al. (2006) Integrated cardio-thoracic imaging with ECG-Gated 64-slice multidetector-row CT: initial findings in 133 patients. Eur Radiol 16:1973–1981PubMedCrossRefGoogle Scholar
  38. 38.
    Greuter MJ, Flohr T, van Ooijen PM, Oudkerk M (2007) A model for temporal resolution of multidetector computed tomography of coronary arteries in relation to rotation time, heart rate and reconstruction algorithm. Eur Radiol 17(3):784–812PubMedCrossRefGoogle Scholar
  39. 39.
    Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216:457–463PubMedGoogle Scholar
  40. 40.
    He S, Dai R, Chen Y, Bai H (2001) Optimal electrocardiographically triggered phase for reducing motion artifact at electron-beam CT in the coronary artery. Acad Radiol 8:48–56PubMedCrossRefGoogle Scholar
  41. 41.
    Mao S, Lu B, Oudiz RJ, Bakhsheshi H, Liu SC, Budoff MJ (2000) Coronary artery motion in electron beam tomography. J Comput Assist Tomogr 24:253–258PubMedCrossRefGoogle Scholar
  42. 42.
    Wang Y, Vidan E, Bergman GW (1999) Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213:751–758PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Marc Dewey
    • 1
    Email author
  • Florian Teige
    • 1
  • Michael Laule
    • 2
  • Bernd Hamm
    • 1
  1. 1.Department of RadiologyCharité - Universitätsmedizin Berlin, Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Cardiology, CharitéBerlinGermany

Personalised recommendations