European Radiology

, 17:2926 | Cite as

Optical tomography of the neonatal brain

Pediatric

Abstract

A new method of assessing neurological function and pathology in the newborn infant is being developed based on the transmission of near-infrared light across the brain. Absorption by blood over a range of wavelengths reveals a strong dependency on oxygenation status, and measurements of transmitted light enable the spatial variation in the concentrations of the oxygenated and de-oxygenated forms of hemoglobin to be derived. Optical tomography has so far provided static three-dimensional maps of blood volume and oxygenation as well as dynamic images revealing the brain’s response to sensory stimulation and global hemodynamic changes. The imaging modality is being developed as a safe and non-invasive tool that can be utilized at the cotside in intensive care. Optical tomography of the healthy infant brain is also providing a means of studying neurophysiological processes during early development and the potential consequences of prematurity.

Keywords

Optical imaging Brain imaging Neonatal 

References

  1. 1.
    Marlow N, Wolke D, Bracewell MA, Samara M, EPICure Study Group (2005) Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 352:9–19PubMedCrossRefGoogle Scholar
  2. 2.
    Pape KE, Blackwell RJ, Cusick G, Sherwood A, Houang MT, Thornburn RJ, Reynolds EOR (1997) Ultrasound detection of brain damage in preterm infants. Lancet 1:1261–1264Google Scholar
  3. 3.
    Volpe JJ (2001) Neurology of the Newborn. WB Saunders, Philidelphia 2001:428–493Google Scholar
  4. 4.
    Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267PubMedCrossRefGoogle Scholar
  5. 5.
    Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 29:463–487PubMedGoogle Scholar
  6. 6.
    Brazy JE, Darrell V, Lewis MD, Mitnick MH, Jöbsis FF (1985) Noninvasive monitoring of cerebral oxygenation in preterm infants: Preliminary observations. Pediatrics 75:217–225PubMedGoogle Scholar
  7. 7.
    Meek JH, Elwell CE, McCormick DC, Edwards AD, Townsend JP, Steward AL, Wyatt JS (1999) Abnormal cerebral hemodynamics in perinatally asphyxiated neonates related to outcome. Arch Dis Child 81:F110–F115Google Scholar
  8. 8.
    Soul JS, du Plessis AJ (1999) New technologies in pediatric neurology: near-infrared spectroscopy. Semin Pediatr Neurol 6:101–110PubMedCrossRefGoogle Scholar
  9. 9.
    Nicklin SE, Hassan IA, Wickramasinghe YA, Spencer SA (2002) The light still shines, but not that brightly? The current status of perinatal near infrared spectroscopy. Arch Dis Child Fetal Neonatal Ed 88:F263–F268CrossRefGoogle Scholar
  10. 10.
    Wolf M, von Siebenthal K, Keel M, Dietz V, Baenziger O, Bucher HU (2002) Comparison of three methods to measure absolute haemoglobin concentration in neonates by near-infrared spectrophotometry. J Biomed Opt 7:221–227PubMedCrossRefGoogle Scholar
  11. 11.
    Wilcox T, Bortfeld H, Woods R, Wruck E, Boas DA (2005) Using near-infrared spectroscopy to assess neural activation during object processing in infants. J Biomed Opt 10:011010CrossRefGoogle Scholar
  12. 12.
    Hebden JC (2003) Advances in optical imaging of the newborn infant brain. Psychophysiol 40:501–510CrossRefGoogle Scholar
  13. 13.
    Chance B, Anday E, Nioka S, Zhou S, Hong L, Worden K, Li C, Murray T, Ovetsky Y, Pidikiti D, Thomas R (1998) A novel method for fast imaging of brain function, non-invasively, with light. Opt Express 2:411–423PubMedGoogle Scholar
  14. 14.
    Hintz SR, Benaron DA, Siegal AM, Zourabian A, Stevenson DK, Boas DA (2001) Bedside functional imaging of the premature infant brain during passive motor activation. J Perinat Med 29:335–343PubMedCrossRefGoogle Scholar
  15. 15.
    Kotilahti K, Nissilä I, Huotilainen M, Mäkelä R, Gavrielides N, Noponen T, Björkman P, Fellman V, Katila T (2005) Bilateral hemodynamic responses to auditory stimulation in newborn infants. Neuroreport 16:1373–1377PubMedCrossRefGoogle Scholar
  16. 16.
    Taga G, Konishi Y, Maki A, Tachibana T, Fujiwara M, Koizumi H (2000) Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography. Neurosci Lett 282:101–104PubMedCrossRefGoogle Scholar
  17. 17.
    Pogue BW, Testorf M, McBride T, Osterberg U, Paulsen K (1997) Instrumentation and Design of a frequency-domain diffuse optical tomography imager for breast cancer detection. Opt Express 1:391–403PubMedCrossRefGoogle Scholar
  18. 18.
    Culver JP, Choe R, Holboke MJ, Zubkov L, Durduran T, Slemp A, Ntziachristos V, Chance B, Yodh AG (2003) Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys 30:235–247PubMedCrossRefGoogle Scholar
  19. 19.
    Schmitz CH, Klemer DP, Hardin R, Katz MS, Pei Y, Graber HL, Levin MB, Levina RD, Franco NA, Solomon WB, Barbour RL (2005) Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements. Appl Opt 44:2140–2152PubMedCrossRefGoogle Scholar
  20. 20.
    Yates TD, Hebden JC, Gibson AP, Everdell NL, Arridge SR, Douek M (2005) Optical tomography of the breast using a multi-channel time-resolved imager. Phys Med Biol 50:2503–2517PubMedCrossRefGoogle Scholar
  21. 21.
    Arridge SR (1999) Optical tomography in medical imaging. Inverse Probl 15:R41–R49CrossRefGoogle Scholar
  22. 22.
    Arridge SR (1995) Photon-measurement density functions. Part I: Analytical forms. Appl Opt 34:7395–7409CrossRefGoogle Scholar
  23. 23.
    Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50:R1–R43PubMedCrossRefGoogle Scholar
  24. 24.
    Austin T, Hebden JC, Gibson AP, Branco G, Yusof R, Arridge SR, Meek JH, Delpy DT, Wyatt JS (2006) Three-dimensional optical imaging of blood volume and oxygenation in the preterm brain. Neuroimage 31:1426–1433PubMedCrossRefGoogle Scholar
  25. 25.
    Gibson AP, Yusof RM, Dehghani H, Riley J, Everdell NL, Richards R, Hebden JC, Schweiger M, Arridge SR, Delpy DT (2003) Optical tomography of a realistic neonatal head phantom. Appl Opt 42:3109–3116PubMedCrossRefGoogle Scholar
  26. 26.
    Jiang S, Pogue BW, McBride TO, Paulsen KD (2003) Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom. J Biomed Opt 8:308–315PubMedCrossRefGoogle Scholar
  27. 27.
    Li A, Miller EL, Kilmer ME, Brukilacchio TJ, Chaves T, Stott J, Zhang Q, Wu T, Chorlton M, Moore RH, Kopans DB, Boas DA (2003) Tomographic optical breast imaging guided by three-dimensional mammography. Appl Opt 42:5181–5190PubMedCrossRefGoogle Scholar
  28. 28.
    Bluestone AY, Abdoulaev G, Schmitz CH, Barbour RL, Hielscher AH (2001) Three-dimensional optical tomography of hemodynamics in the human head. Opt Express 9:272–286PubMedGoogle Scholar
  29. 29.
    Benaron DA, Hintz SR, Villringer A, Boas D, Kleinschmidt A, Frahm J, Hirth C, Obrig H, van Houten JC, Kermit EL, Cheong W-F, Stevenson DK (2000) Noninvasive functional imaging of human brain using light. J Cereb Blood Flow Metab 20:469–477PubMedCrossRefGoogle Scholar
  30. 30.
    Hintz SR, Benaron DA, van Houten JP, Duckworth JL, Liu FWH, Spilman SD, Stevenson DK, Cheong W-F (1998) Stationary headband for clinical time-of-flight optical imaging at the bedside. Photochem Photobiol 68:361–369PubMedCrossRefGoogle Scholar
  31. 31.
    Schweiger M, Arridge SR (1999) Application of temporal filters to time resolved data in optical tomography. Phys Med Biol 44:1699–1717PubMedCrossRefGoogle Scholar
  32. 32.
    Arridge SR, Lionheart WRB (1998) Non-uniqueness in optical tomography. Opt Lett 23:882–884PubMedGoogle Scholar
  33. 33.
    Benaron DA, Ho DC, Spilman S, van Houten JP, Stevenson DK (1994) Non-recursive linear algorithms for optical imaging in diffusive media. Adv Exp Med Biol 361:215–222PubMedGoogle Scholar
  34. 34.
    Hintz SR, Cheong W-F, van Houten JP, Stevenson DK, Benaron DA (1999) Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging. Pediatr Res 45:54–59PubMedCrossRefGoogle Scholar
  35. 35.
    Schmidt FEW, Fry ME, Hillman EMC, Hebden JC, Delpy DT (2000) A 32-channel time-resolved instrument for medical optical tomography. Rev Sci Instrum 71:256–265CrossRefGoogle Scholar
  36. 36.
    Hebden JC, Gibson A, Yusof R, Everdell N, Hillman EMC, Delpy DT, Arridge SR, Austin T, Meek JH, Wyatt JS (2002) Three-dimensional optical tomography of the premature infant brain. Phys Med Biol 47:4155–4166PubMedCrossRefGoogle Scholar
  37. 37.
    Hebden JC, Price BD, Gibson AP, Royle G (2006) A soft deformable tissue-equivalent phantom for diffuse optical tomography. Phys Med Biol 51(21):5581–5590PubMedCrossRefGoogle Scholar
  38. 38.
    Arridge SR, Schweiger M (1997) Image reconstruction in optical tomography. Phil Trans Royal Soc London Series B-Biol Sci 352:717–726CrossRefGoogle Scholar
  39. 39.
    Hillman EMC (2002) Experimental and theoretical investigations of near-infrared tomographic imaging methods and clinical applications. PhD Thesis University of London. http://www.medphys.ucl.ac.uk/research/borl/theses.htm
  40. 40.
    Borch K, Greisen G (1998) Blood flow distribution in the normal human preterm brain. Pediatr Res 43:28–33PubMedCrossRefGoogle Scholar
  41. 41.
    Powers WJ, Press GA, Grubb RL, Gado M, Raichle ME (1987) The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med 106:27–34PubMedGoogle Scholar
  42. 42.
    Volpe JJ, Herscovitch P, Perlman JM, Raichie ME (1983) Positron emission tomography in the newborn: extensive impairment of regional cerebral blood flow with intraventricular haemorrhage and haemorrhagic intracerebral involvement. Pediatrics 72:589–601PubMedGoogle Scholar
  43. 43.
    Hebden JC, Gibson A, Austin T, Yusof R, Everdell N, Delpy DT, Arridge SR, Meek JH, Wyatt JS (2004) Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography. Phys Med Biol 49:1117–1130PubMedCrossRefGoogle Scholar
  44. 44.
    Gibson AP, Austin T, Everdell NL, Schweiger M, Arridge SR, Meek JH, Wyatt JS, Delpy DT, Hebden JC (2006) Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate. Neuroimage 30:521–528PubMedCrossRefGoogle Scholar
  45. 45.
    Meek JH, Firbank M, Elwell CE, Atkinson J, Braddick O, Wyatt JS (1998) Regional haemodynamic responses to visual stimulation in awake infants. Pediatr Res 43:840–843PubMedCrossRefGoogle Scholar
  46. 46.
    Kusaka T, Kawada K, Okubo K, Nagano K, Namba M, Okada H, Imai T, Isobe K, Itoh S (2004) Noninvasive optical imaging in the visual cortex in young infants. Hum Brain Mapp 22:122–132PubMedCrossRefGoogle Scholar
  47. 47.
    Martin E, Joeri P, Loenneker T, Ekatodramis D, Vitacco D, Hennig J, Marcar VL (1999) Visual processing in infants and children using functional MRI. Pediatr Res 46:135–140PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Medical Physics & BioengineeringUniversity College LondonLondonUK
  2. 2.Department of Paediatrics & Child HealthUniversity College LondonLondonUK

Personalised recommendations