European Radiology

, Volume 17, Issue 9, pp 2401–2410 | Cite as

MR thermometry for monitoring tumor ablation

  • Baudouin Denis de Senneville
  • Charles Mougenot
  • Bruno Quesson
  • Iulius Dragonu
  • Nicolas Grenier
  • Chrit T. W. MoonenEmail author
Magnetic Resonance


Local thermal therapies are increasingly used in the clinic for tissue ablation. During energy deposition, the actual tissue temperature is difficult to estimate since physiological processes may modify local heat conduction and energy absorption. Blood flow may increase during temperature increase and thus change heat conduction. In order to improve the therapeutic efficiency and the safety of the intervention, mapping of temperature and thermal dose appear to offer the best strategy to optimize such interventions and to provide therapy endpoints. MRI can be used to monitor local temperature changes during thermal therapies. On-line availability of dynamic temperature mapping allows prediction of tissue death during the intervention based on semi-empirical thermal dose calculations. Much progress has been made recently in MR thermometry research, and some applications are appearing in the clinic. In this paper, the principles of MRI temperature mapping are described with special emphasis on methods employing the temperature dependency of the water proton resonance frequency. Then, the prospects and requirements for widespread applications of MR thermometry in the clinic are evaluated.


MRI Thermometry Therapy 



European Union, NoE “Diagnostic Molecular Imaging”; Ligue National Contre le Cancer, Conseil Régional d’Aquitaine, Philips Medical Systems, CDTU canceropôle network.


  1. 1.
    Lele PP (1967) Production of deep focal lesions by focused ultrasound current status. Ultrasonics 5:105–112PubMedCrossRefGoogle Scholar
  2. 2.
    Dodd GD, Soulen MC, Kane RA, Livraghi T, Lees WR, Yamashita Y, Gillams AR, Karahan OI, Rhim H (2000) Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough. Radiographics 20(1):9–27PubMedGoogle Scholar
  3. 3.
    Marrero JA (2006) Hepatocellular carcinoma. Curr Opin Gastroenterol 22(3):248–253PubMedCrossRefGoogle Scholar
  4. 4.
    Memarsadeghi M, Schmook T, Remzi M, Weber M, Potscher G, Lammer J, Kettenbach J (2006) Percutaneous radiofrequency ablation of renal tumors: midterm results in 16 patients. Eur J Radiol 59(2):183–189PubMedCrossRefGoogle Scholar
  5. 5.
    Mulier S, Ni Y, Frich L, Burdio F, Denys AL, De Wispelaere JF, Dupas B, Habib N, Hoey M, Jansen MC, Lacrosse M, Leveillee R, Miao Y, Mulier P, Mutter D, Ng KK, Santambrogio R, Stippel D, Tamaki K, van Gulik TM, Marchal G, Michel L (2007) Experimental and clinical radiofrequency ablation: proposal for standardized description of coagulation size and geometry. Ann Surg OncolGoogle Scholar
  6. 6.
    Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K (2003) MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 226(3):897–905. MarPubMedCrossRefGoogle Scholar
  7. 7.
    Stewart EA, Rabinovici J, Tempany CMC, Inbar Y, Regan L, Gastout B, Hesley G, Kim HS, Hengst S, Gedroye WM (2006) Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids. Fertil Steril 85(1):22–29PubMedCrossRefGoogle Scholar
  8. 8.
    Furusawa H, Namba K, Thomsen S, Akiyama F, Bendet A, Tanaka C, Yasuda Y, Nakahara H (2006) Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. J Am Coll Surg 203(1):54–63PubMedCrossRefGoogle Scholar
  9. 9.
    Zippel DB, Papa MZ (2005) The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review. Breast Cancer 12:32–38PubMedCrossRefGoogle Scholar
  10. 10.
    Uchida T, Ohkusa H, Yamashita H, Shoji S, Nagata Y, Hyodo T, Satoh T (2006) Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer. Int J Urol 13(3):228–233PubMedCrossRefGoogle Scholar
  11. 11.
    Kennedy JE, Wu F, ter Haar GR, Gleeson FV, Phillips RR, Middleton MR, Cranston D (2004) High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics 42(1–9):931–935PubMedCrossRefGoogle Scholar
  12. 12.
    Hacker A, Michel MS, Marlinghaus E, Kohrmann KU, Alken P (2006) Extracorporeally induced ablation of renal tissue by high-intensity focused ultrasound. BJU Int 97(4):779–785PubMedCrossRefGoogle Scholar
  13. 13.
    Wu F, Wang ZB et al (2003) Non-invasive ablation of high intensity focused ultrasound for the treatment of patients with malignant bone tumours. J Bone Joint Surg (Br) 87-B(Issue Supp I):4Google Scholar
  14. 14.
    Wang X, Sun J (2002) High-intensity focused ultrasound in patients with late-stage pancreatic carcinoma. Chin Med J (Engl) 115(9):1332–1335Google Scholar
  15. 15.
    Guilhon E, Quesson B, Moraud-Gaudry F, de Verneuil H, Canioni P, Salomir R, Voisin P, Moonen CTW (2003) Image-guided control of transgene expression based on local hyperthermia. J Molecular Imaging 2(1):11–17CrossRefGoogle Scholar
  16. 16.
    Madio DP, Van Gelderen P, DesPres D, Olson AW, de Zwart JA, Fawcett TW, Holbrook N, Mandel M, Moonen CTW (1998) On the feasibility of MRI-guided focused ultrasound for local induction of gene expression. J Magn Reson Imaging 8:101–104PubMedCrossRefGoogle Scholar
  17. 17.
    Sapareto SA, Dewey WCL (1984) Thermal dose determination in cancer therapy. Int J Radiation Oncology Biol Phys 10:787–800Google Scholar
  18. 18.
    Lepetit-Coiffe M, Quesson B, Seror O, Dumont E, Le Bail B, Moonen CTW, Trillaud H (2006) Real-time monitoring of radiofrequency ablation of rabbit liver by respiratory-gated quantitative temperature MRI. J Magn Reson Imaging 24:152–159PubMedCrossRefGoogle Scholar
  19. 19.
    Parker DL, Smith V, Sheldon P, Crooks LE, Fussell L (1983) Temperature distribution measurements in two-dimensional NMR imaging. Med Phys 10(3):321–325PubMedCrossRefGoogle Scholar
  20. 20.
    Fried MP, Morrison PR, Hushek SG, Kernahan GA, Jolesz FA (1996) Dynamic T1-weighted magnetic resonance imaging of interstitial laser photocoagulation in the liver: observations on in vivo temperature sensitivity. Lasers Surg Med 18(4):410–419PubMedCrossRefGoogle Scholar
  21. 21.
    Graham SJ, Bronskill MJ, Henkelman RM (1998) Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 39(2):198–203PubMedCrossRefGoogle Scholar
  22. 22.
    Le Bihan D, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology 171(3):853–867PubMedGoogle Scholar
  23. 23.
    De Poorter J, De Wagter C, De Deene Y, Thomsen C, Stahlberg F, Achten E (1995) Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle. Magn Reson Med 33(1):74–81PubMedCrossRefGoogle Scholar
  24. 24.
    Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K et al (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34(6):814–823PubMedCrossRefGoogle Scholar
  25. 25.
    Peters RD, Henkelman RM (2000) Proton-resonance frequency shift MR thermometry is affected by changes in the electrical conductivity of tissue. Magn Reson Med 43:62–71PubMedCrossRefGoogle Scholar
  26. 26.
    Wlodarczyk W, Boroschewski R, Hentschel M, Wust P, Monich G, Felix R (1998) Three-dimensional monitoring of small temperature changes for therapeutic hyperthermia using MR. J Magn Reson Imaging 8(1):165–174PubMedCrossRefGoogle Scholar
  27. 27.
    Quesson B, de Zwart JA, Moonen CTW (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12(4):525–533PubMedCrossRefGoogle Scholar
  28. 28.
    Denis de Senneville B, Quesson B, Moonen CTW (2005) Magnetic resonance temperature imaging. Int J Hypertherm 21(6):515–531CrossRefGoogle Scholar
  29. 29.
    de Zwart JA, Vimeux FC, Delalande C, Canioni P, Moonene CT (1999) Fast lipid-suppressed MR temperature mapping with echo-shifted gradient-echo imaging and spectral-spatial excitation. Magn Reson Med 42(1):53–59PubMedCrossRefGoogle Scholar
  30. 30.
    McDannold N, Hynynen K, Wolf D, Wolf G, Jolesz F (1998) MRI evaluation of thermal ablation of tumors with focused ultrasound. J Magn Reson Ig 8:91–100CrossRefGoogle Scholar
  31. 31.
    Cline HE, Hynynen K, Hardy CJ, Watkins RD, Schenck JF, Jolesz FA (1994) MR temperature mapping of focused ultrasound surgery. Magn Reson Med 31:628–636PubMedCrossRefGoogle Scholar
  32. 32.
    Popat S, Lopez J, Chan S, Waters J, Cominos M, Rutter D, Hill ME (2006) Palliative treatments for patients with inoperable gastroesophageal cancers. Int J Palliat Nurs 12(7):306–317PubMedGoogle Scholar
  33. 33.
    Dahan L, Ries P, Laugier R, Seitz JF (2006) Palliative endoscopic treatments for esophageal cancers. Gastroenterol Clin Biol 30(2):253–261PubMedCrossRefGoogle Scholar
  34. 34.
    Germain D, Chevallier P, Laurent A, Savart M, Wassef M, Saint-Jalmes H (2001) MR monitoring of laser-induced lesions of the liver in vivo in a low-field open magnet: temperature mapping and lesion size prediction. J Magn Reson Imaging 13(1):42–49PubMedCrossRefGoogle Scholar
  35. 35.
    Vogl TJ, Straub R, Zangos S, Mack MG, Eichler K (2004) MR-guided laser-induced thermotherapy (LITT) of liver tumours: experimental and clinical data. Int J Hyperthermia 20(7):713–724PubMedCrossRefGoogle Scholar
  36. 36.
    Vogl TJ, Fieguth HG, Eichler K, Straub R, Lehnert T, Zangos S, Mack M (2004) Laser-induced thermotherapy of lung metastases and primary lung tumors. Radiologe 44(7):693–699PubMedCrossRefGoogle Scholar
  37. 37.
    Vogl TJ, Lehnert T, Wetter A, Mack MG, Wurster MG (2005) Interventional radiology in Carney triad. Eur Radiol 15(4):833–837PubMedCrossRefGoogle Scholar
  38. 38.
    Fiorella ML, Ross DA, White RI, Sabba C, Fiorella R (2004) Hereditary haemorrhagic telangiectasia: state of the art. Acta Otorhinolaryngol Ital 24(6):330–336PubMedGoogle Scholar
  39. 39.
    Maataoui A, Qian J, Mack MG, Straub R, Oppermann E, Khan MF, Knappe V, Vogl TJ (2005) Laser-induced Interstitial thermotherapy (LITT) in hepatic metastases of various sizes in an animal model. Rofo 177(3):405–410PubMedGoogle Scholar
  40. 40.
    Eyrich GK, Bruder E, Hilfiker P, Dubno B, Quick HH, Patak MA, Gratz KW, Sailer HF (2000) Temperature mapping of magnetic resonance-guided laser interstitial thermal therapy (LITT) in lymphangiomas of the head and neck. Lasers Surg Med 26(5):467–476PubMedCrossRefGoogle Scholar
  41. 41.
    Atsumi H, Matsumae M (2005) Laser interstitial thermo therapy (LITT) for brain tumors. Nippon Rinsho 63(Suppl 9):495–498PubMedGoogle Scholar
  42. 42.
    Peters RD, Chan E, Trachtenberg J, Jothy S, Kapusta L, Kucharczyk W et al (2000) Magnetic resonance thermometry for predicting thermal damage: an application of interstitial laser coagulation in an in vivo canine prostate model. Magn Reson Med 44(6):873–883PubMedCrossRefGoogle Scholar
  43. 43.
    Vigen KK, Daniel BL, Pauly JM, Butts K (2003) Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion. Magn Reson Med 50(5):1003–1010PubMedCrossRefGoogle Scholar
  44. 44.
    McGahan JP, Browning PD, Brock JM, Teslik H (1990) Hepatic ablation using radiofrequency electrocautery. Invest Radiol 25:267–270PubMedCrossRefGoogle Scholar
  45. 45.
    Rossi S, Fornari F, Pathies C, Buscarini L (1990) Thermal lesions induced by 480 KHz localized current field in guinea pig and pig liver. Tumori 76:54–57PubMedGoogle Scholar
  46. 46.
    Nour SG (2004) Standardization of terms and reporting criteria for imageguided tumor ablation. Radiology 232:626–627; author reply 627PubMedCrossRefGoogle Scholar
  47. 47.
    Chen MH, Yang W, Yan K et al (2004) Large liver tumors: protocol for radiofrequency ablation and its clinical application in 110 patients-mathematic model, overlapping mode, and electrode placement process. Radiology 232:260–271PubMedCrossRefGoogle Scholar
  48. 48.
    Solbiati L, Ierace T, Tonolini M, Cova L (2004) Guidance and monitoring of radiofrequency liver tumor ablation with contrast-enhanced ultrasound. Eur Journ Radiol 51(Suppl):S19–S23CrossRefGoogle Scholar
  49. 49.
    Solbiati L, Tonolini M, Cova L (2004) Monitoring RF ablation. Eur Radiol 14(Suppl 8):P34–P42PubMedGoogle Scholar
  50. 50.
    Gellermann J, Wlodarczyk W, Feussner A, Fahling H, Nadobny J, Hildebrandt B, Felix R, Wust P (2005) Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int J Hyperthermia 21(6):497–513PubMedCrossRefGoogle Scholar
  51. 51.
    Lepetit-Coiffe M, Quesson B, Seror O, Dumont E, Le Bail B, Moonen CTW, Trillaud H (2006) Real-time monitoring of radiofrequency ablation of rabbit liver by respiratory-gated quantitative temperature MRI. J Magn Reson Imaging 24(1):152–159PubMedCrossRefGoogle Scholar
  52. 52.
    Rhim H, Goldberg SN, Dodd GD 3rd et al (2001) Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors. Radiographics 21(spec no):S17–S35; discussion S36–S19PubMedGoogle Scholar
  53. 53.
    Aube C, Schmidt D, Brieger J et al (2004) Magnetic resonance imaging characteristics of six radiofrequency electrodes in a phantom study. J Vasc Interv Radiol 15:385–392PubMedGoogle Scholar
  54. 54.
    Demura K, Morikawa S, Murakami K, Sato K, Shiomi H, Naka S, Kurumi Y, Inubushi T, Tani T (2006) An easy-to-use microwave hyperthermia system combined with spatially resolved MR temperature maps: phantom and animal studies. J Surg Res 135(1):179–186PubMedCrossRefGoogle Scholar
  55. 55.
    Sato K, Morikawa S, Inubushi T, Kurumi Y, Naka S, Haque HA, Demura K, Tani T (2005) Alternate biplanar MR navigation for microwave ablation of liver tumors. Magn Reson Med Sci 4(2):89–94PubMedCrossRefGoogle Scholar
  56. 56.
    Lynn JG, Putman TJ (1944) Histological and cerebral lesions produced by focused ultrasound. Am J Pathol 20:637–649PubMedGoogle Scholar
  57. 57.
    Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA (1992) MR-guided focused ultrasound surgery. J Comput Assist Tomogr 16(6):956–965PubMedCrossRefGoogle Scholar
  58. 58.
    Pernot M, Aubry JF, Tanter M, Thomas JL, Fink M (2003) High power transcranial beam steering for ultrasonic brain therapy. Phys Med Biol 48(16):2577–2589PubMedCrossRefGoogle Scholar
  59. 59.
    Hynynen K, McDannold N, Clement G, Jolesz FA, Zadicario E, Killiany R, Moore T, Rosen D (2006) Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain-a primate study. Eur J Radiol 59(2):149–156PubMedCrossRefGoogle Scholar
  60. 60.
    Ram Z, Cohen ZR, Harnof S, Tal S, Faibel M, Nass D, Maier SE, Hadani M, Mardor Y (2006) Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 59(5):949–955PubMedGoogle Scholar
  61. 61.
    Denis de Senneville B, Mougenot C, Moonen CTW (2007) Real time adaptive methods for treatment of mobile organs by MRI controlled high intensity focused ultrasound. Magn Reson Med 57(2):319–330CrossRefGoogle Scholar
  62. 62.
    Bennett WR (1962) Electrical noise. McGraw Hill, New-YorkGoogle Scholar
  63. 63.
    Gudbjartsson H, Patz S (1995) The rician distribution of noisy MRI data. Magn Reson Med 34:910–914PubMedCrossRefGoogle Scholar
  64. 64.
    Sijbers J, den Dekker AJ (2004) Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magn Reson Med 51:589–594CrossRefGoogle Scholar
  65. 65.
    De Poorter J, De Wagter C, De Deene Y, Thomson C, Stahlberg F, Achten E (1994) The proton resonance frequency shift method compared with molecular diffusion for quantitative measurement of two dimensional time dependent temperature distribution in phantom. J Magn Reson 103:234–241CrossRefGoogle Scholar
  66. 66.
    Young IR, Hajnal JV, Roberts IG, Ling JX, Hill-Cottingham RJ, Oatridge A et al (1996) An evaluation of the effects of susceptibility changes on the water chemical shift method of temperature measurement in human peripheral muscle. Magn Reson Med 36(3):366–374PubMedCrossRefGoogle Scholar
  67. 67.
    Mougenot C, Salomir R, Palussière J, Grenier N, Moonen CTW (2004) Automatic spatial and temporal temperature control for MR-guided focused ultrasound using fast 3D MR thermometry and multispiral trajectory of the focal point. Magn Reson Med 52:1005–1015PubMedCrossRefGoogle Scholar
  68. 68.
    Kennedy JE, ter Haar GR, Cranston D (2003) High intensity focused ultrasound: surgery of the future? Br J Radiol 76(909):590–599PubMedCrossRefGoogle Scholar
  69. 69.
    Scheffler K (2004) Fast frequency mapping with balanced SSFP: theory and application to proton-resonance frequency shift thermometry. Magn Reson Med 51(6):1205–1211PubMedCrossRefGoogle Scholar
  70. 70.
    Riederer SJ (1996) Recent technical advances in MR imaging of the abdomen. J Magn Reson Imaging 6:822–832PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Baudouin Denis de Senneville
    • 1
  • Charles Mougenot
    • 1
    • 2
  • Bruno Quesson
    • 1
  • Iulius Dragonu
    • 1
  • Nicolas Grenier
    • 1
    • 3
  • Chrit T. W. Moonen
    • 1
    Email author
  1. 1.Laboratory for Molecular and Functional Imaging: From Physiology to TherapyCNRS/Université Bordeaux 2BordeauxFrance
  2. 2.Philips Systèmes MédicauxSuresnesFrance
  3. 3.Service de Radiologie-CHU PellegrinBordeauxFrance

Personalised recommendations