European Radiology

, Volume 17, Issue 11, pp 2872–2879 | Cite as

Feasibility of a RARE-based sequence for quantitative diffusion-weighted MRI of the spine

  • J. G. Raya
  • O. Dietrich
  • C. Birkenmaier
  • J. Sommer
  • M. F. Reiser
  • A. Baur-Melnyk


The feasibility of a diffusion-weighted single-shot fast-spin-echo sequence for the diagnostic work-up of bone marrow diseases was assessed. Twenty healthy controls and 16 patients with various bone marrow pathologies of the spine (bone marrow edema, tumor and inflammation) were examined with a diffusion-weighted single-shot sequence based on a modified rapid acquisition with relaxation enhancement (mRARE) technique; four diffusion weightings (b-values: 50, 250, 500 and 750 s/mm2) in three orthogonal orientations were applied. Apparent diffusion coefficients (ADCs) were determined in the bone marrow and in the intervertebral discs of healthy volunteers and in diseased bone marrow. Ten of the 20 volunteers were repeatedly scanned within 30 min to examine short-time reproducibility. Spatial reproducibility was assessed by measuring ADCs in two different slices including the same lesion in 12 patients. The ADCs of the lesions exhibited significantly higher values, (1.27 ± 0.32)×10−3 mm2/s, compared with healthy bone marrow, (0.21 ± 0.10)×10−3 mm2/s. Short-time and spatial reproducibility had a mean coefficient of variation of 2.1% and 6.4%, respectively. The diffusion-weighted mRARE sequence provides a reliable tool for determining quantitative ADCs in vertebral bone marrow with adequate image quality.


Magnetic resonance (MR) Diffusions study magnetic resonance (MR) Bone marrow disease Tissue characterization 



This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Grant No. BA-2089(1–3).


  1. 1.
    Castillo M, Mukherji SK (2000) Diffusion-weighted imaging in the evaluation of intracranial lesions. Semin Ultrasound CT MR 21:405–416PubMedCrossRefGoogle Scholar
  2. 2.
    Baur A, Stäbler A, Brüning R, Bartl R, Krodel A, Reiser M, Deimling M (1998) Diffusion-weighted MR imaging of bone marrow: Differentiation of benign versus pathologic compression fractures. Radiology 207:349–356PubMedGoogle Scholar
  3. 3.
    Baur A, Huber A, Dürr HR, Nikolau K, Stabler A, Deimling M, Reiser M (2002) [Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence]. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:70–75PubMedCrossRefGoogle Scholar
  4. 4.
    Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ (2002) Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol 23:165–170PubMedGoogle Scholar
  5. 5.
    Maeda M, Sakuma H, Maier SE, Takeda K (2003) Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. AJR Am J Roentgenol 181:1203–1209PubMedGoogle Scholar
  6. 6.
    Pui MH, Mitha A, Rae WI, Corr P (2005) Diffusion-weighted magnetic resonance imaging of spinal infection and malignancy. J Neuroimaging 15:164–170PubMedCrossRefGoogle Scholar
  7. 7.
    Chan JH, Peh WC, Tsui EY, Chau LF, Cheung KK, Chan KB, Yuen MK, Wong ET, Wong KP (2002) Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 75:207–214PubMedGoogle Scholar
  8. 8.
    Yeung DK, Wong SY, Griffith JF, Lau EM (2004) Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging 19:222–228PubMedCrossRefGoogle Scholar
  9. 9.
    Raya JG, Dietrich O, Reiser MF, Baur-Menlyk A (2005) Techniques for diffusion-weighted imaging of bone marrow. Eur Radiol 55:64–73CrossRefGoogle Scholar
  10. 10.
    Wu EX, Buxton RB (1990) Effect on the Steady-State Magnetization wit pulsed field gradients. J Magn Reson 90:243–253Google Scholar
  11. 11.
    Norris DG (1991) Ultrafast low-angle RARE: U-FLARE. Magn Reson Med 17:539–542PubMedCrossRefGoogle Scholar
  12. 12.
    Norris DG, Bornert P, Reese T, Leibfritz D (1992) On the application of ultra-fast RARE experiments. Magn Reson Med 27:142–164PubMedCrossRefGoogle Scholar
  13. 13.
    Dietrich O, Heiland S, Sartor K (2001) Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med 45:448–453PubMedCrossRefGoogle Scholar
  14. 14.
    Bastin ME, Armitage PA, Marshall I (1998) A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. Mag Reson Imaging 16:773–785CrossRefGoogle Scholar
  15. 15.
    Constantinides CD, Atalar E, McVeigh ER (1997) Mag Reson Med 38:852–857CrossRefGoogle Scholar
  16. 16.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedGoogle Scholar
  17. 17.
    British Standards Institution (1979) Precision of test method (BS 5497, part 1). BSI, LondonGoogle Scholar
  18. 18.
    Weiß C (2002) Basiswisen medizinische statistik, 2nd edn. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  19. 19.
    Dietrich O, Raya JG, Sommer J, Deimling M, Reiser MF, Baur-menlyk A (2005) A comparative evaluation of a RARE-based single-shot pulse sequence for diffusion-weighted MRI of musculoskeletal soft-tissue tumors. Eur Radiol 15:772–783PubMedCrossRefGoogle Scholar
  20. 20.
    Dietrich O, Herlihy A, Dannels WR, Fiebach J, Heiland S, Hajnal JV, Sartor K (2001) Diffusion-weighted imaging of the spine using radial k-space trajectories. MAGMA 12:23–31PubMedCrossRefGoogle Scholar
  21. 21.
    Bammer R, Herneth AM, Maier SE, Butts K, Prokesch RW, Do HM, Atlas SW, Moseley ME (2003) Line scan diffusion imaging of the spine. AJNR Am J Neuroradiol 24:5–12PubMedGoogle Scholar
  22. 22.
    Kerttula LI, Jauhiainen JP, Tervonen O, Suramo IJ, Koivula A, Oikarinen JT (2000) Apparent diffusion coefficient in thoracolumbar intervertebral discs of healthy young volunteers. J Magn Reson Imaging 12:255–260PubMedCrossRefGoogle Scholar
  23. 23.
    Newitt DC, Majumdar S (2005) Reproducibility and dependence on diffusion weighting of line scan diffusion in the lumbar intervertebral discs. J Magn Reson Imaging 21:482–488PubMedCrossRefGoogle Scholar
  24. 24.
    Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J (2002) Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol 23:906–912PubMedGoogle Scholar
  25. 25.
    Ward R, Caruthers S, Yablon C, Blake M, DiMasi M, Eustace S (2000) Analysis of diffusion changes in posttraumatic bone marrow using navigator-corrected diffusion gradients. AJR Am J Roentgenol 174:731–734PubMedGoogle Scholar
  26. 26.
    Feydy A, Drape JL, Argaud C, Diche T, Revelon G, Costes J, Chevrot A (2001) Diffusion-weighted MRI and ADC measurement of tumoral bone marrow. In: Proceedings of the 9th Annual Meeting of ISMRM, San Francisco (abstract 2117)Google Scholar
  27. 27.
    Kugel H, Jung C, Schulte O, Heindel W (2001) Age- and sex-specific differences in the H1-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268PubMedCrossRefGoogle Scholar
  28. 28.
    Spuentrup E, Buecker A, Adam G, van Vaals JJ, Guenther RW (2001) Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. AJR Am J Roentgenol 176:351–358PubMedGoogle Scholar
  29. 29.
    Raya JG, Dietrich O, Reiser MF, Baur-Malnyk A (2006) Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imaging 24:1207–1220PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. G. Raya
    • 1
  • O. Dietrich
    • 1
  • C. Birkenmaier
    • 2
  • J. Sommer
    • 1
  • M. F. Reiser
    • 1
  • A. Baur-Melnyk
    • 1
  1. 1.Department of Clinical RadiologyUniversity of Munich-GroßhadernMunichGermany
  2. 2.Department of Orthopedic SurgeryUniversity of Munich-GroßhadernMunichGermany

Personalised recommendations