European Radiology

, Volume 17, Issue 9, pp 2384–2393 | Cite as

Endovascular optical coherence tomography ex vivo: venous wall anatomy and tissue alterations after endovenous therapy

  • Oliver A. MeissnerEmail author
  • Claus-Georg Schmedt
  • Kathrin Hunger
  • Holger Hetterich
  • Ronald Sroka
  • Johannes Rieber
  • Gregor Babaryka
  • Bernd Manfred Steckmeier
  • Maximilian Reiser
  • Uwe Siebert
  • Ullrich Mueller-Lisse


Endovascular optical coherence tomography (OCT) is a new imaging modality providing histology-like information of the venous wall. Radiofrequency ablation (RFA) and laser therapy (ELT) are accepted alternatives to surgery. This study evaluated OCT for qualitative assessment of venous wall anatomy and tissue alterations after RFA and ELT in bovine venous specimens. One hundred and thirty-four venous segments were obtained from ten ex-vivo bovine hind limbs. OCT signal characteristics for different wall layers were assessed in 180/216 (83%) quadrants from 54 normal venous cross-sections. Kappa statistics (κ) were used to calculate intra- and inter-observer agreement. Qualitative changes after RFA (VNUS-Closure) and ELT (diode laser 980 nm, energy densities 15 Joules (J)/cm, 25 J/cm, 35 J/cm) were described in 80 venous cross-sections. Normal veins were characterized by a three-layered appearance. After RFA, loss of three-layered appearance and wall thickening at OCT corresponded with circular destruction of tissue structures at histology. Wall defects after ELT ranged from non-transmural punctiform damage to complete perforation, depending on the energy density applied. Intra- and inter-observer agreement for reading OCT images was very high (0.90 and 0.88, respectively). OCT allows for reproducible evaluation of normal venous wall and alterations after endovenous therapy. OCT could prove to be valuable for optimizing endovenous therapy in vivo.


Optical coherence tomography Endovenous laser therapy Endovenous radio-frequency therapy 



We thank our research staff at the Ludwig Maximilians University of Munich. A substantial part of the data of this study originated from the doctoral theses of cand. med. Kathrin Hunger. The study was partially funded by the Friedrich-Bauer-Stiftung. Dr. Meissner served as a consultant for Siemens AG, Medical Solutions, during the time this study was conducted.


  1. 1.
    Brezinski ME, Tearney GJ, Bouma B, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1998) Optical biopsy with optical coherence tomography. Ann N Y Acad Sci 838:68–74PubMedCrossRefGoogle Scholar
  2. 2.
    Brezinski ME, Tearney GJ, Bouma BE, Boppart SA, Hee MR, Swanson EA, Southern JF, Fujimoto JG (1996) Imaging of coronary artery microstructure (in vitro) with optical coherence tomography. Am J Cardiol 77:92–93PubMedCrossRefGoogle Scholar
  3. 3.
    Fujimoto JG, Boppart SA, Tearney GJ, Bouma BE, Pitris C, Brezinski ME (1999) High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart 82:128–133PubMedGoogle Scholar
  4. 4.
    Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K (2005) Assessment of coronary intima-media thickness by optical coherence tomography: comparison with intravascular ultrasound. Circ J 69:903–907PubMedCrossRefGoogle Scholar
  5. 5.
    Brezinski M (2002) Characterizing arterial plaque with optical coherence tomography. Curr Opin Cardiol 17:648–655PubMedCrossRefGoogle Scholar
  6. 6.
    Patwari P, Weissman NJ, Boppart SA, Jesser C, Stamper D, Fujimoto JG, Brezinski ME (2000) Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. Am J Cardiol 85:641–644PubMedCrossRefGoogle Scholar
  7. 7.
    Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645PubMedCrossRefGoogle Scholar
  8. 8.
    Meissner OA, Rieber J, Babaryka G, Oswald M, Reim S, Siebert U, Redel T, Eibel R, Mueller-Lisse U, Reiser M, Mueller-Lisse UG (2006) [Intravascular optical coherence tomography: differentiation of atherosclerotic plaques and quantification of vessel dimensions in crural arterial specimens]. Rofo 178:214–220PubMedGoogle Scholar
  9. 9.
    Feied C, Min RJ, Weiss R, Zimmet SE, Hashemiyoon R (2005) Varicose vein treatment with endovenous laser therapy. http://www.
  10. 10.
    Merchant RF, Pichot O (2005) Long-term outcomes of endovenous radiofrequency obliteration of saphenous reflux as a treatment for superficial venous insufficiency. J Vasc Surg 42:502–509; discussion 509PubMedCrossRefGoogle Scholar
  11. 11.
    Proebstle TM, Moehler T, Gul D, Herdemann S (2005) Endovenous treatment of the great saphenous vein using a 1,320 nm Nd:YAG laser causes fewer side effects than using a 940 nm diode laser. Dermatol Surg 31:1678–1683; discussion 1683–1684PubMedGoogle Scholar
  12. 12.
    Goldman MP (2000) Closure of the greater saphenous vein with endoluminal radiofrequency thermal heating of the vein wall in combination with ambulatory phlebectomy: preliminary 6-month follow-up. Dermatol Surg 26:452–456PubMedCrossRefGoogle Scholar
  13. 13.
    Kabnick LS (2006) Outcome of different endovenous laser wavelengths for great saphenous vein ablation. J Vasc Surg 43:88–93PubMedCrossRefGoogle Scholar
  14. 14.
    Proebstle TM, Lehr HA, Kargl A, Espinola-Klein C, Rother W, Bethge S, Knop J (2002) Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg 35:729–736PubMedCrossRefGoogle Scholar
  15. 15.
    Lurie F, Creton D, Eklof B, Kabnick LS, Kistner RL, Pichot O, Schuller-Petrovic S, Sessa C (2003) Prospective randomized study of endovenous radiofrequency obliteration (closure procedure) versus ligation and stripping in a selected patient population (EVOLVeS Study). J Vasc Surg 38:207–214PubMedCrossRefGoogle Scholar
  16. 16.
    Lurie F, Creton D, Eklof B, Kabnick LS, Kistner RL, Pichot O, Sessa C, Schuller-Petrovic S (2005) Prospective randomised study of endovenous radiofrequency obliteration (closure) versus ligation and vein stripping (EVOLVeS): two-year follow-up. Eur J Vasc Endovasc Surg 29:67–73PubMedCrossRefGoogle Scholar
  17. 17.
    Merchant RF, Pichot O, Myers KA (2005) Four-year follow-up on endovascular radiofrequency obliteration of great saphenous reflux. Dermatol Surg 31:129–134PubMedCrossRefGoogle Scholar
  18. 18.
    Perkowski P, Ravi R, Gowda RC, Olsen D, Ramaiah V, Rodriguez-Lopez JA, Diethrich EB (2004) Endovenous laser ablation of the saphenous vein for treatment of venous insufficiency and varicose veins: early results from a large single-center experience. J Endovasc Ther 11:132–138PubMedCrossRefGoogle Scholar
  19. 19.
    Rautio T, Ohinmaa A, Perala J, Ohtonen P, Heikkinen T, Wiik H, Karjalainen P, Haukipuro K, Juvonen T (2002) Endovenous obliteration versus conventional stripping operation in the treatment of primary varicose veins: a randomized controlled trial with comparison of the costs. J Vasc Surg 35:958–965PubMedCrossRefGoogle Scholar
  20. 20.
    Mundy L, Merlin TL, Fitridge RA, Hiller JE (2005) Systematic review of endovenous laser treatment for varicose veins. Br J Surg 92:1189–1194PubMedCrossRefGoogle Scholar
  21. 21.
    Schmedt CG, Sroka R, Steckmeier S, Meissner OM, Babaryka G, Hunger K, Ruppert V, Sadeghi-Azandaryani M, Steckmeier BM (2006) Investigation on radiofrequency and laser (980 nm) effects after endoluminal treatment of saphenous vein insufficiency in an ex-vivo model. Eur J Vasc Endovasc Surg 32:318–325PubMedCrossRefGoogle Scholar
  22. 22.
    Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21:1361–1367PubMedCrossRefGoogle Scholar
  23. 23.
    Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA (1995) Optical biopsy and imaging using optical coherence tomography. Nat Med 1:970–972PubMedCrossRefGoogle Scholar
  24. 24.
    Huang D, Li Y, Radhakrishnan S (2004) Optical coherence tomography of the anterior segment of the eye. Ophthalmol Clin North Am 17:1–6PubMedCrossRefGoogle Scholar
  25. 25.
    Min RJ, Zimmet SE, Isaacs MN, Forrestal MD (2001) Endovenous laser treatment of the incompetent greater saphenous vein. J Vasc Interv Radiol 12:1167–1171PubMedCrossRefGoogle Scholar
  26. 26.
    Navarro L, Min RJ, Bone C (2001) Endovenous laser: a new minimally invasive method of treatment for varicose veins-preliminary observations using an 810 nm diode laser. Dermatol Surg 27:117–122PubMedCrossRefGoogle Scholar
  27. 27.
    Weiss RA, Weiss MA (2002) Controlled radiofrequency endovenous occlusion using a unique radiofrequency catheter under duplex guidance to eliminate saphenous varicose vein reflux: a 2-year follow-up. Dermatol Surg 28:38–42PubMedCrossRefGoogle Scholar
  28. 28.
    Min RJ, Khilnani N, Zimmet SE (2003) Endovenous laser treatment of saphenous vein reflux: long-term results. J Vasc Interv Radiol 14:991–996PubMedGoogle Scholar
  29. 29.
    Huang Y, Jiang M, Li W, Lu X, Huang X, Lu M (2005) Endovenous laser treatment combined with a surgical strategy for treatment of venous insufficiency in lower extremity: a report of 208 cases. J Vasc Surg 42:494–501; discussion 501PubMedCrossRefGoogle Scholar
  30. 30.
    Proebstle TM, Krummenauer F, Gul D, Knop J (2004) Nonocclusion and early reopening of the great saphenous vein after endovenous laser treatment is fluence dependent. Dermatol Surg 30:174–178PubMedCrossRefGoogle Scholar
  31. 31.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  32. 32.
    Regar E, Schaar JA, Mont E, Virmani R, Serruys PW (2003) Optical coherence tomography. Cardiovasc Radiat Med 4:198–204PubMedCrossRefGoogle Scholar
  33. 33.
    Meissner OA, Rieber J, Babaryka G, Oswald M, Reim S, Siebert U, Redel T, Reiser M, Mueller-Lisse U (2006) Intravascular optical coherence tomography: comparison with histopathology in atherosclerotic peripheral artery specimens. J Vasc Interv Radiol 17:343–349PubMedCrossRefGoogle Scholar
  34. 34.
    Corcos L, Dini S, De Anna D, Marangoni O, Ferlaino E, Procacci T, Spina T, Dini M (2005) The immediate effects of endovenous diode 808-nm laser in the greater saphenous vein: morphologic study and clinical implications. J Vasc Surg 41:1018–1024; discussion 1025PubMedCrossRefGoogle Scholar
  35. 35.
    Timperman PE, Sichlau M, Ryu RK (2004) Greater energy delivery improves treatment success of endovenous laser treatment of incompetent saphenous veins. J Vasc Interv Radiol 15:1061–1063PubMedGoogle Scholar
  36. 36.
    Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39:604–609PubMedCrossRefGoogle Scholar
  37. 37.
    Jang IK, Tearney G, Bouma B (2001) Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation 104:2754PubMedGoogle Scholar
  38. 38.
    Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555PubMedCrossRefGoogle Scholar
  39. 39.
    Rieber J, Meissner O, Babaryka G, Reim S, Oswald M, Koenig A, Schiele TM, Shapiro M, Theisen K, Reiser MF, Klauss V, Hoffmann U (2006) Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: a comparison with histology. Coron Artery Dis 17:425–430PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Oliver A. Meissner
    • 1
    • 8
    Email author
  • Claus-Georg Schmedt
    • 2
  • Kathrin Hunger
    • 1
  • Holger Hetterich
    • 3
  • Ronald Sroka
    • 4
  • Johannes Rieber
    • 3
  • Gregor Babaryka
    • 5
  • Bernd Manfred Steckmeier
    • 2
  • Maximilian Reiser
    • 1
  • Uwe Siebert
    • 6
    • 7
  • Ullrich Mueller-Lisse
    • 1
  1. 1.Institute for Clinical RadiologyLudwig Maximilians UniversityMunichGermany
  2. 2.Department of Vascular Surgery and PhlebologyLudwig Maximilians UniversityMunichGermany
  3. 3.Division of CardiologyLudwig Maximilians UniversityMunichGermany
  4. 4.Laser Research Laboratory, LIFE-CenterLudwig Maximilians UniversityMunichGermany
  5. 5.Institute of PathologyLudwig Maximilians UniversityMunichGermany
  6. 6.Institute for Technology Assessment and Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  7. 7.Department of Public Health, Medical Decision Making and Health Technology AssessmentUniversity for Health Sciences, Medical Informatics and TechnologyHall/InnsbruckAustria
  8. 8.Siemens AG Medical SolutionsForchheimGermany

Personalised recommendations