European Radiology

, Volume 17, Issue 8, pp 1979–1984

Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners

  • Marco Das
  • Julia Ley-Zaporozhan
  • H. A. Gietema
  • Andre Czech
  • Georg Mühlenbruch
  • Andreas H. Mahnken
  • Markus Katoh
  • Annemarie Bakai
  • Marcos Salganicoff
  • Stefan Diederich
  • Mathias Prokop
  • Hans-Ulrich Kauczor
  • Rolf W. Günther
  • Joachim E. Wildberger
Experimental

Abstract

The purpose of this study was to compare the accuracy of an automated volumetry software for phantom pulmonary nodules across various 16-slice multislice spiral CT (MSCT) scanners from different vendors. A lung phantom containing five different nodule categories (intraparenchymal, around a vessel, vessel attached, pleural, and attached to the pleura), with each category comprised of 7–9 nodules (total, n = 40) of varying sizes (diameter 3–10 mm; volume 6.62 mm3–525 mm3), was scanned with four different 16-slice MSCT scanners (Siemens, GE, Philips, Toshiba). Routine and low-dose chest protocols with thin and thick collimations were applied. The data from all scanners were used for further analysis using a dedicated prototype volumetry software. Absolute percentage volume errors (APE) were calculated and compared. The mean APE for all nodules was 8.4% (±7.7%) for data acquired with the 16-slice Siemens scanner, 14.3% (±11.1%) for the GE scanner, 9.7% (±9.6%) for the Philips scanner and 7.5% (±7.2%) for the Toshiba scanner, respectively. The lowest APEs were found within the diameter size range of 5–10 mm and volumes >66 mm3. Nodule volumetry is accurate with a reasonable volume error in data from different scanner vendors. This may have an important impact for intraindividual follow-up studies.

Keywords

Multislice CT Pulmonary nodule Nodule volumetry Automated volumetry Chest CT 

References

  1. 1.
    Wormanns D, Ludwig K, Beyer F, Heindel W, Diederich S (2005) Detection of pulmonary nodules at multirow-detector CT: effectiveness of double reading to improve sensitivity at standard-dose and low-dose chest CT. Eur Radiol 15:14–22PubMedCrossRefGoogle Scholar
  2. 2.
    Valencia R, Denecke T, Lehmkuhl L, Fischbach F, Felix R, Knollmann F (2006) Value of axial and coronal maximum intensity projection (MIP) images in the detection of pulmonary nodules by multislice spiral CT: comparison with axial 1-mm and 5-mm slices. Eur Radiol 16:325–332PubMedCrossRefGoogle Scholar
  3. 3.
    Takashima S, Sone S, Li F, Maruyama Y, Hasegawa M, Kadoya M (2003) Indeterminate solitary pulmonary nodules revealed at population-based CT screening of the lung: using first follow-up diagnostic CT to differentiate benign and malignant lesions. AJR Am J Roentgenol 180:1255–1263PubMedGoogle Scholar
  4. 4.
    Tan BB, Flaherty KR, Kazerooni EA, Iannettoni MD (2003) The solitary pulmonary nodule. Chest 123:89S–96SPubMedCrossRefGoogle Scholar
  5. 5.
    Diederich S, Wormanns D, Semik M et al (2002) Screening for early lung cancer with low-dose spiral CT: prevalence in 817 asymptomatic smokers. Radiology 222:773–781PubMedCrossRefGoogle Scholar
  6. 6.
    Henschke CI, McCauley DI, Yankelevitz DF et al (1999) Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 354:99–105PubMedCrossRefGoogle Scholar
  7. 7.
    Henschke CI, Naidich DP, Yankelevitz DF et al (2001) Early lung cancer action project: initial findings on repeat screenings. Cancer 92:153–159PubMedCrossRefGoogle Scholar
  8. 8.
    Sone S, Takashima S, Li F et al (1998) Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet 351:1242–1245PubMedCrossRefGoogle Scholar
  9. 9.
    Swensen SJ, Jett JR, Hartman TE et al (2003) Lung cancer screening with CT: Mayo Clinic experience. Radiology 226:756–761PubMedCrossRefGoogle Scholar
  10. 10.
    Diederich S, Hansen J, Wormanns D (2005) Resolving small pulmonary nodules: CT features. Eur Radiol 15:2064–2069PubMedCrossRefGoogle Scholar
  11. 11.
    MacMahon H, Austin JH, Gamsu G et al (2005) Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 237:395–400PubMedCrossRefGoogle Scholar
  12. 12.
    Bogot NR, Kazerooni EA, Kelly AM, Quint LE, Desjardins B, Nan B (2005) Interobserver and intraobserver variability in the assessment of pulmonary nodule size on CT using film and computer display methods. Acad Radiol 12:948–956PubMedCrossRefGoogle Scholar
  13. 13.
    Marten K, Auer F, Schmidt S, Kohl G, Rummeny EJ, Engelke C (2006) Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria. Eur Radiol 16:781–790PubMedCrossRefGoogle Scholar
  14. 14.
    Marten K, Engelke C, Grabbe E, Rummeny EJ (2004) [Flat-panel detector-based computed tomography: accuracy of experimental growth rate assessment in pulmonary nodules]. Rofo 176:752–757PubMedGoogle Scholar
  15. 15.
    Marten K, Funke M, Engelke C (2004) Flat panel detector-based volumetric CT: prototype evaluation with volumetry of small artificial nodules in a pulmonary phantom. J Thorac Imaging 19:156–163PubMedCrossRefGoogle Scholar
  16. 16.
    Wiemker R, Rogalla P, Blaffert T et al (2005) Aspects of computer-aided detection (CAD) and volumetry of pulmonary nodules using multislice CT. Br J Radiol 78 Spec No:S46–S56PubMedCrossRefGoogle Scholar
  17. 17.
    Wormanns D, Kohl G, Klotz E et al (2004) Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Eur Radiol 14:86–92PubMedCrossRefGoogle Scholar
  18. 18.
    Yankelevitz DF, Reeves AP, Kostis WJ, Zhao B, Henschke CI (2000) Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology 217:251–256PubMedGoogle Scholar
  19. 19.
    Boll DT, Gilkeson RC, Fleiter TR, Blackham KA, Duerk JL, Lewin JS (2004) Volumetric assessment of pulmonary nodules with ECG-gated MDCT. AJR Am J Roentgenol 183:1217–1223PubMedGoogle Scholar
  20. 20.
    Mullally W, Betke M, Wang J, Ko JP (2004) Segmentation of nodules on chest computed tomography for growth assessment. Med Phys 31:839–848PubMedCrossRefGoogle Scholar
  21. 21.
    Bolte H, Riedel C, Jahnke T et al (2006) Reproducibility of computer-aided volumetry of artificial small pulmonary nodules in ex vivo porcine lungs. Invest Radiol 41:28–35PubMedCrossRefGoogle Scholar
  22. 22.
    Goo JM, Tongdee T, Tongdee R, Yeo K, Hildebolt CF, Bae KT (2005) Volumetric measurement of synthetic lung nodules with multi-detector row CT: effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy. Radiology 235:850–856PubMedCrossRefGoogle Scholar
  23. 23.
    Ko JP, Rusinek H, Jacobs EL et al (2003) Small pulmonary nodules: volume measurement at chest CT-phantom study. Radiology 228:864–870PubMedCrossRefGoogle Scholar
  24. 24.
    Shin HO, Blietz M, Frericks B, Baus S, Savellano D, Galanski M (2006) Insertion of virtual pulmonary nodules in CT data of the chest: development of a software tool. Eur Radiol 16:2567–2574 NovPubMedCrossRefGoogle Scholar
  25. 25.
    Benjamin MS, Drucker EA, McLoud TC, Shepard JA (2003) Small pulmonary nodules: detection at chest CT and outcome. Radiology 226:489–493PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Marco Das
    • 1
  • Julia Ley-Zaporozhan
    • 2
  • H. A. Gietema
    • 3
  • Andre Czech
    • 4
  • Georg Mühlenbruch
    • 1
  • Andreas H. Mahnken
    • 1
  • Markus Katoh
    • 1
  • Annemarie Bakai
    • 5
  • Marcos Salganicoff
    • 6
  • Stefan Diederich
    • 4
  • Mathias Prokop
    • 3
  • Hans-Ulrich Kauczor
    • 2
  • Rolf W. Günther
    • 1
  • Joachim E. Wildberger
    • 1
  1. 1.Department of Diagnostic RadiologyRWTH Aachen UniversityAachenGermany
  2. 2.Department of RadiologyGerman Cancer Research CenterHeidelbergGermany
  3. 3.Department of Diagnostic RadiologyUniversity Hospital UtrechtUtrechtThe Netherlands
  4. 4.Department of Diagnostic RadiologyMarienhospital DüsseldorfDüsseldorfGermany
  5. 5.CT DivisionSiemens Medical SolutionsForchheimGermany
  6. 6.CAD ApplicationsSiemens Medical SolutionsMalvernUSA

Personalised recommendations