European Radiology

, Volume 17, Issue 7, pp 1663–1668 | Cite as

Uncinate fasciculus fiber tracking in mesial temporal lobe epilepsy. Initial findings

  • S. Rodrigo
  • C. Oppenheim
  • F. Chassoux
  • N. Golestani
  • Y. Cointepas
  • C. Poupon
  • F. Semah
  • J.-F. Mangin
  • D. Le Bihan
  • J.-F. Meder
Neuro

Abstract

In temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS), ictal discharge spread to the frontal and insulo-perisylvian cortex is commonly observed. The implication of white matter pathways in this propagation has not been investigated. We compared diffusion tensor imaging (DTI) measurements along the uncinate fasciculus (UF), a major tract connecting the frontal and temporal lobes, in patients and controls. Ten right-handed patients referred for intractable TLE due to a right HS were investigated on a 1.5-T MR scanner including a DTI sequence. All patients had interictal fluorodeoxyglucose PET showing an ipsilateral temporal hypometabolism associated with insular and frontal or perisylvian hypometabolism. The controls consisted of ten right-handed healthy subjects. UF fiber tracking was performed, and its fractional anisotropy (FA) values were compared between patients and controls, separately for the right and left UF. The left-minus-right FA UF asymmetry index was computed to test for intergroup differences. Asymmetries were found in the control group with right-greater-than-left FA. This asymmetrical pattern was lost in the patient group. Right FA values were lower in patients with right HS versus controls. Although preliminary, these findings may be related to the preferential pathway of seizure spread from the mesial temporal lobe to frontal and insulo-perisylvian areas.

Keywords

Mesial temporal lobe epilepsy Hippocampal sclerosis Diffusion tensor imaging Fiber tracking 

References

  1. 1.
    Urbach H (2005) Imaging of the epilepsies. Eur Radiol 15:494–500PubMedCrossRefGoogle Scholar
  2. 2.
    Le Bihan D et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546PubMedCrossRefGoogle Scholar
  3. 3.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648PubMedGoogle Scholar
  4. 4.
    Assaf BA et al (2003) Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. AJNR Am J Neuroradiol 24:1857–1862PubMedGoogle Scholar
  5. 5.
    Wieshmann UC, Clark CA, Symms MR, Barker GJ, Birnie KD, Shorvon SD (1999) Water diffusion in the human hippocampus in epilepsy. Magn Reson Imaging 17:29–36PubMedCrossRefGoogle Scholar
  6. 6.
    Arfanakis K, Hermann BP, Rogers BP, Carew JD, Seidenberg M, Meyerand ME (2002) Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging 20:511–519PubMedCrossRefGoogle Scholar
  7. 7.
    Dumas de la Roque A et al (2005) Diffusion tensor imaging of partial intractable epilepsy. Eur Radiol 15:279–285PubMedCrossRefGoogle Scholar
  8. 8.
    Moran NF, Lemieux L, Kitchen ND, Fish DR, Shorvon SD (2001) Extrahippocampal temporal lobe atrophy in temporal lobe epilepsy and mesial temporal sclerosis. Brain 124:167–175PubMedCrossRefGoogle Scholar
  9. 9.
    Sisodiya SM et al (1997) Correlation of widespread preoperative magnetic resonance imaging changes with unsuccessful surgery for hippocampal sclerosis. Ann Neurol 41:490–496PubMedCrossRefGoogle Scholar
  10. 10.
    Henry TR, Mazziotta JC, Engel J Jr (1993) Interictal metabolic anatomy of mesial temporal lobe epilepsy. Arch Neurol 50:582–589PubMedGoogle Scholar
  11. 11.
    Theodore WH, Sato S, Kufta C, Balish MB, Bromfield EB, Leiderman DB (1992) Temporal lobectomy for uncontrolled seizures: the role of positron emission tomography. Ann Neurol 32:789–794PubMedCrossRefGoogle Scholar
  12. 12.
    Arnold S et al (1996) Topography of interictal glucose hypometabolism in unilateral mesiotemporal epilepsy. Neurology 46:1422–1430PubMedGoogle Scholar
  13. 13.
    Dupont S, Semah F, Baulac M, Samson Y (1998) The underlying pathophysiology of ictal dystonia in temporal lobe epilepsy: an FDG-PET study. Neurology 51:1289–1292PubMedGoogle Scholar
  14. 14.
    Savic I, Altshuler L, Baxter L, Engel J Jr (1997) Pattern of interictal hypometabolism in PET scans with fludeoxyglucose F 18 reflects prior seizure types in patients with mesial temporal lobe seizures. Arch Neurol 54:129–136PubMedGoogle Scholar
  15. 15.
    Chassoux F et al (2004) Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain 127:164–174PubMedCrossRefGoogle Scholar
  16. 16.
    Bartolomei F et al (1999) Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electro-encephalography. Clin Neurophysiol 110:1741–1754PubMedCrossRefGoogle Scholar
  17. 17.
    Bouilleret V, Dupont S, Spelle L, Baulac M, Samson Y, Semah F (2002) Insular cortex involvement in mesiotemporal lobe epilepsy: a positron emission tomography study. Ann Neurol 51:202–208PubMedCrossRefGoogle Scholar
  18. 18.
    Isnard J, Guenot M, Ostrowsky K, Sindou M, Mauguiere F (2000) The role of the insular cortex in temporal lobe epilepsy. Ann Neurol 48:614–623PubMedCrossRefGoogle Scholar
  19. 19.
    Dejerine J (1895) Anatomie des centres nerveux. Rueff et Cie, ParisGoogle Scholar
  20. 20.
    Cointepas Y, Mangin JF, Garnero L, Poline JB, Benali H (2001) BrainVISA: Software platform for visualization and analysis of multi-modality brain data. 7th HBM 2001 Brighton, UKGoogle Scholar
  21. 21.
    Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I (2002) Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal 6:191–198PubMedCrossRefGoogle Scholar
  22. 22.
    Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540PubMedCrossRefGoogle Scholar
  23. 23.
    Conturo TE et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427PubMedCrossRefGoogle Scholar
  24. 24.
    Kier EL, Staib LH, Davis LM, Bronen RA (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. AJNR Am J Neuroradiol 25:677–691PubMedGoogle Scholar
  25. 25.
    Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMedCrossRefGoogle Scholar
  26. 26.
    Team RDC (2006) R: a language and environment for statistical computing. ViennaGoogle Scholar
  27. 27.
    Kubicki M et al (2002) Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatr 159:813–820PubMedCrossRefGoogle Scholar
  28. 28.
    Park HJ et al (2004) White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. Neuroimage 23:213–223PubMedCrossRefGoogle Scholar
  29. 29.
    Highley JR, Walker MA, Esiri MM, Crow TJ, Harrison PJ (2002) Asymmetry of the uncinate fasciculus: a post-mortem study of normal subjects and patients with schizophrenia. Cereb Cortex 12:1218–1224PubMedCrossRefGoogle Scholar
  30. 30.
    Westerhausen R, Walter C, Kreuder F, Wittling RA, Schweiger E, Wittling W (2003) The influence of handedness and gender on the microstructure of the human corpus callosum: a diffusion-tensor magnetic resonance imaging study. Neurosci Lett 351:99–102PubMedCrossRefGoogle Scholar
  31. 31.
    Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435–455PubMedCrossRefGoogle Scholar
  32. 32.
    Bhagat YA, Beaulieu C (2004) Diffusion anisotropy in subcortical white matter and cortical gray matter: changes with aging and the role of CSF-suppression. J Magn Reson Imaging 20:216–227PubMedCrossRefGoogle Scholar
  33. 33.
    Pfefferbaum A, Sullivan EV, Hedehus M, Lim KO, Adalsteinsson E, Moseley M (2000) Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med 44:259–268PubMedCrossRefGoogle Scholar
  34. 34.
    Eriksson SH, Rugg-Gunn FJ, Symms MR, Barker GJ, Duncan JS (2001) Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 124:617–626PubMedCrossRefGoogle Scholar
  35. 35.
    Concha L, Beaulieu C, Gross DW (2005) Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann Neurol 57:188–196PubMedCrossRefGoogle Scholar
  36. 36.
    Babb TL, Brown MJ (1987) Pathological findings in epilepsy. In: Engel J Jr (ed) Surgical treatment of the epilepsies. Raven, New York, pp 511–540Google Scholar
  37. 37.
    Margerison JH, Corsellis JA (1966) Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89:499–530PubMedCrossRefGoogle Scholar
  38. 38.
    Jones DK, Symms MR, Cercignani M, Howard RJ (2005) The effect of filter size on VBM analyses of DT-MRI data. Neuroimage 26:546–554PubMedCrossRefGoogle Scholar
  39. 39.
    Kasper BS, Stefan H, Paulus W (2003) Microdysgenesis in mesial temporal lobe epilepsy: a clinicopathological study. Ann Neurol 54:501–506PubMedCrossRefGoogle Scholar
  40. 40.
    Mitchell LA et al (1999) Anterior temporal abnormality in temporal lobe epilepsy: a quantitative MRI and histopathologic study. Neurology 52:327–336PubMedGoogle Scholar
  41. 41.
    Wieser R, Engel J Jr (1993) Surgically remediable temporal lobe syndromes. In: Engel J Jr (ed) Surgical treatment of the epilepsies. Raven, New York, pp 49–63Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. Rodrigo
    • 1
  • C. Oppenheim
    • 1
  • F. Chassoux
    • 2
  • N. Golestani
    • 3
  • Y. Cointepas
    • 3
  • C. Poupon
    • 3
  • F. Semah
    • 3
  • J.-F. Mangin
    • 3
  • D. Le Bihan
    • 3
  • J.-F. Meder
    • 1
  1. 1.Département d’Imagerie Morphologique et FonctionnelleUniversité Paris-Descartes, Faculté de Médecine, Centre Hospitalier Sainte-AnneParisFrance
  2. 2.Université Paris-Descartes, Faculté de Médecine, Service de Neurochirurgie, Centre Hospitalier Sainte-AnneParisFrance
  3. 3.Service Hospitalier Frédéric Joliot, CEAOrsay cedexFrance

Personalised recommendations