Advertisement

European Radiology

, Volume 17, Issue 6, pp 1510–1517 | Cite as

Material differentiation by dual energy CT: initial experience

  • Thorsten R. C. Johnson
  • Bernhard Krauß
  • Martin Sedlmair
  • Michael Grasruck
  • Herbert Bruder
  • Dominik Morhard
  • Christian Fink
  • Sabine Weckbach
  • Miriam Lenhard
  • Bernhard Schmidt
  • Thomas Flohr
  • Maximilian F. Reiser
  • Christoph R. Becker
Computer Tomography

Abstract

The aim of this study was to assess the feasibility of a differentiation of iodine from other materials and of different body tissues using dual energy CT. Ten patients were scanned on a SOMATOM Definition Dual Source CT (DSCT; Siemens, Forchheim, Germany) system in dual energy mode at tube voltages of 140 and 80 kVp and a ratio of 1:3 between tube currents. Weighted CT Dose Index ranged between 7 and 8 mGy, remaining markedly below reference dose values for the respective body regions. Image post-processing with three-material decomposition was applied to differentiate iodine or collagen from other tissue. The results showed that a differentiation and depiction of contrast material distribution is possible in the brain, the lung, the liver and the kidneys with or without the underlying tissue of the organ. In angiographies, bone structures can be removed from the dataset to ease the evaluation of the vessels. The differentiation of collagen makes it possible to depict tendons and ligaments. Dual energy CT offers a more specific tissue characterization in CT and can improve the assessment of vascular disease. Further studies are required to draw conclusions on the diagnostic value of the individual applications.

Keywords

X-ray computed tomography Dual-energy CT Iodine Collagen Angiography 

References

  1. 1.
    Avrin DE, Macovski A, Zatz LE (1978) Clinical application of Compton and photo-electric reconstruction in computed tomography: preliminary results. Invest Radiol 13:217–222PubMedCrossRefGoogle Scholar
  2. 2.
    Kruger RA, Riederer SJ, Mistretta CA (1977) Relative properties of tomography, K-edge imaging, and K-edge tomography. Med Phys 4:244–249PubMedCrossRefGoogle Scholar
  3. 3.
    Riederer SJ, Mistretta CA (1977) Selective iodine imaging using K-edge energies in computerized x-ray tomography. Med Phys 4:474–481PubMedCrossRefGoogle Scholar
  4. 4.
    Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, Ryu D, Morishita S, Sultana S, Sato N, Yamashita Y (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951PubMedCrossRefGoogle Scholar
  5. 5.
    Chiro GD, Brooks RA, Kessler RM, Johnston GS, Jones AE, Herdt JR, Sheridan WT (1979) Tissue signatures with dual-energy computed tomography. Radiology 131:521–523PubMedGoogle Scholar
  6. 6.
    Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551PubMedCrossRefGoogle Scholar
  7. 7.
    Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ (1979) Extraction of information from CT scans at different energies. Med Phys 6:70–71PubMedCrossRefGoogle Scholar
  8. 8.
    Kelcz F, Joseph PM, Hilal SK (1979) Noise considerations in dual energy CT scanning. Med Phys 6:418–425PubMedCrossRefGoogle Scholar
  9. 9.
    Fraser RG, Barnes GT, Hickey N, Luna R, Katzenstein A, Alexander B, McElvein R, Zorn G, Sabbagh E, Robinson CA Jr (1986) Potential value of digital radiography. Preliminary observations on the use of dual-energy subtraction in the evaluation of pulmonary nodules. Chest 89:249S–252SPubMedGoogle Scholar
  10. 10.
    Cann CE, Gamsu G, Birnberg FA, Webb WR (1982) Quantification of calcium in solitary pulmonary nodules using single- and dual-energy CT. Radiology 145:493–496PubMedGoogle Scholar
  11. 11.
    Svendsen OL, Hassager C, Bergmann I, Christiansen C (1993) Measurement of abdominal and intra-abdominal fat in postmenopausal women by dual energy X-ray absorptiometry and anthropometry: comparison with computerized tomography. Int J Obes Relat Metab Disord 17:45–51PubMedGoogle Scholar
  12. 12.
    Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C, Buhmann S, Knez A, Reiser MF, Becker CR (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415PubMedCrossRefGoogle Scholar
  13. 13.
    Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H, Theessen H, Karakaya M, Daniel WG, Bautz W, Kalender WA, Anders K (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography-initial experience. Eur J Radiol 57:331–335PubMedCrossRefGoogle Scholar
  14. 14.
    Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O, Schepis T, Frauenfelder T, Schertler T, Husmann L, Grunenfelder J, Genoni M, Kaufmann PA, Marincek B, Leschka S (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol DOI  10.1007/s00330-006-0474-0
  15. 15.
    Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Kuttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  16. 16.
    Michael GJ (1992) Tissue analysis using dual energy CT. Australas Phys Eng Sci Med 15:75–87PubMedGoogle Scholar
  17. 17.
    Bundesamt für Strahlenschutz, Bundesanzeiger No. 143 5 August 2003, p 17503Google Scholar
  18. 18.
    McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512PubMedCrossRefGoogle Scholar
  19. 19.
    Rizzo S, Kalra M, Schmidt B, Dalal T, Suess C, Flohr T, Blake M, Saini S (2006) Comparison of angular and combined automatic tube current modulation techniques with constant tube current CT of the abdomen and pelvis. AJR Am J Roentgenol 186:673–679PubMedCrossRefGoogle Scholar
  20. 20.
    Wang B, Gao Z, Zou Q, Li L (2003) Quantitative diagnosis of fatty liver with dual-energy CT. An experimental study in rabbits. Acta Radiol 44:92–97PubMedCrossRefGoogle Scholar
  21. 21.
    Chapman RW, Williams G, Bydder G, Dick R, Sherlock S, Kreel L (1980) Computed tomography for determining liver iron content in primary haemochromatosis. Br Med J 280:440–442PubMedCrossRefGoogle Scholar
  22. 22.
    Goldberg HI, Cann CE, Moss AA, Ohto M, Brito A, Federle M (1982) Noninvasive quantitation of liver iron in dogs with hemochromatosis using dual-energy CT scanning. Invest Radiol 17:375–380PubMedCrossRefGoogle Scholar
  23. 23.
    Mendler MH, Bouillet P, Le Sidaner A, Lavoine E, Labrousse F, Sautereau D, Pillegand B (1998) Dual-energy CT in the diagnosis and quantification of fatty liver: limited clinical value in comparison to ultrasound scan and single-energy CT, with special reference to iron overload. J Hepatol 28:785–794PubMedCrossRefGoogle Scholar
  24. 24.
    Oelckers S, Graeff W (1996) In situ measurement of iron overload in liver tissue by dual-energy methods. Phys Med Biol 41:1149–1165PubMedCrossRefGoogle Scholar
  25. 25.
    Raptopoulos V, Karellas A, Bernstein J, Reale FR, Constantinou C, Zawacki JK (1991) Value of dual-energy CT in differentiating focal fatty infiltration of the liver from low-density masses. AJR Am J Roentgenol 157:721–725PubMedGoogle Scholar
  26. 26.
    Winkler SS, Holden JE, Sackett JF, Flemming DC, Alexander SC (1977) Xenon and krypton as radiographic inhalation contrast media with computerized tomography: preliminary note. Invest Radiol 12:19–20PubMedCrossRefGoogle Scholar
  27. 27.
    Hoffman EA, Chon D (2005) Computed tomography studies of lung ventilation and perfusion. Proc Am Thorac Soc 2:492–498, 506PubMedCrossRefGoogle Scholar
  28. 28.
    Tajik JK, Chon D, Won C, Tran BQ, Hoffman EA (2002) Subsecond multisection CT of regional pulmonary ventilation. Acad Radiol 9:130–146PubMedCrossRefGoogle Scholar
  29. 29.
    Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS (2005) XCOM: Photon Cross Sections Database, NIST Standard Reference Database 8 (XGAM). http://www.physicsnistgov/xcom

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thorsten R. C. Johnson
    • 1
  • Bernhard Krauß
    • 2
  • Martin Sedlmair
    • 1
    • 2
  • Michael Grasruck
    • 2
  • Herbert Bruder
    • 2
  • Dominik Morhard
    • 1
  • Christian Fink
    • 1
  • Sabine Weckbach
    • 1
  • Miriam Lenhard
    • 3
  • Bernhard Schmidt
    • 2
  • Thomas Flohr
    • 2
  • Maximilian F. Reiser
    • 1
  • Christoph R. Becker
    • 1
  1. 1.Department of Clinical RadiologyUniversity of Munich-Grosshadern CampusMunichGermany
  2. 2.Siemens Medical Solutions AG—Computed TomographyForchheimGermany
  3. 3.Department of Obstetrics and GynecologyUniversity of Munich-Grosshadern CampusMunichGermany

Personalised recommendations