European Radiology

, Volume 17, Issue 3, pp 716–724 | Cite as

Proton MRI appearance of cystic fibrosis: Comparison to CT

  • Michael PuderbachEmail author
  • Monika Eichinger
  • Julie Gahr
  • Sebastian Ley
  • Siegfried Tuengerthal
  • Astrid Schmähl
  • Christian Fink
  • Christian Plathow
  • Matthias Wiebel
  • Frank-Michael Müller
  • Hans-Ulrich Kauczor


Cystic fibrosis (CF) is the most frequent inherited disorder leading to premature death in the Caucasian population. As life expectancy is limited by pulmonary complications, repeated imaging [chest X-ray, multislice high-resolution computed tomography (MS-HRCT)] is required in the follow-up. Magnetic resonance imaging (MRI) of the lung parenchyma is a promising new diagnostic tool. Its value for imaging lung changes caused by CF compared with CT is demonstrated. MRI performs well when compared with CT, which serves as the gold standard. Its lack in spatial resolution is obvious, but advantages in contrast and functional assessment compensate for this limitation. Thus, MRI is a reasonable alternative for imaging the CF lung and should be introduced as a radiation-free modality for follow-up studies in CF patients. For further evaluation of the impact of MRI, systematic studies comparing MRI and conventional imaging modalities are necessary. Furthermore, the value of the additional functional MRI (fMRI) information has to be studied, and a scoring system for the morphological and functional aspect of MRI has to be established.


Magnetic resonance imaging Computed tomography Cystic fibrosis Chest 


  1. 1.
    Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951PubMedCrossRefGoogle Scholar
  2. 2.
    Stern M, Sens B, Wiedemann B, Busse O, Damm G., Wenzlaff P (2005) Qualitätssicherung Mukoviszidose - Überblick über den Gesundheitszustand der Patienten in Deutschland 2004. In: Zentrum für Qualität und Management im Gesundheitswesen und Mukoviszidose e.V., pp 56Google Scholar
  3. 3.
    Chrispin AR, Norman AP (1974) The systematic evaluation of the chest radiograph in Cystic Fibrosis. Pediatr Radiol 2:101–106PubMedCrossRefGoogle Scholar
  4. 4.
    Bhalla M, Turcios N, Aponte V, Jenkins M, Leitman BS, McCauley DI, Naidich DP (1991) Cystic fibrosis: scoring system with thin-section CT. Radiol 179:783–788Google Scholar
  5. 5.
    Helbich TH, Heinz-Peer G, Eichler I, Wunderbaldinger P, Gotz M, Wojnarowski C, Brasch RC, Herold CJ (1999) Cystic fibrosis: CT assessment of lung involvement in children and adults. Radiol 213:537–544Google Scholar
  6. 6.
    de Jong PA, Mayo JR, Golmohammadi K, Nakano Y, Lequin MH, Tiddens HA, Aldrich J, Coxson HO, Sin DD (2006) Estimation of cancer mortality associated with repetitive computed tomography scanning. Am J Respir Crit Care Med 173:199–203PubMedCrossRefGoogle Scholar
  7. 7.
    Fiel SB, Friedman AC, Caroline DF, Radecki PD, Faerber E, Grumbach K (1987) Magnetic resonance imaging in young adults with cystic fibrosis. Chest 91:181–184PubMedGoogle Scholar
  8. 8.
    Carr DH, Oades P, Trotman-Dickenson B, Mohiaddin R, Wells AU, Bush A (1995) Magnetic resonance scanning in cystic fibrosis: comparison with computed tomography. Clin Radiol 50:84–89PubMedCrossRefGoogle Scholar
  9. 9.
    Kauczor HU, Kreitner KF (2000) Contrast-enhanced MRI of the lung. Eur J Radiol 34:196–207PubMedCrossRefGoogle Scholar
  10. 10.
    Heidemann RM, Griswold MA, Kiefer B, Nittka M, Wang J, Jellus V, Jakob PM (2003) Resolution enhancement in lung H-1 imaging using parallel imaging methods. Magn Reson Med 49:391–394PubMedCrossRefGoogle Scholar
  11. 11.
    Fink C, Bock M, Puderbach M, Schmahl A, Delorme S (2003) Partially parallel three-dimensional magnetic resonance imaging for the assessment of lung perfusion-initial results. Invest Radiol 38:482–488PubMedCrossRefGoogle Scholar
  12. 12.
    Fink C, Puderbach M, Bock M, Lodemann KP, Zuna I, Schmahl A, Delorme S, Kauczor HU (2004) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiol 231:175–184Google Scholar
  13. 13.
    Eichinger M, Puderbach M, Fink C, Gahr J, Ley S, Plathow C, Tuengerthal S, Zuna I, Müller FM, Kauczor H-U (2006) Contrast-enhanced 3D MRI of Lung Perfusion in Children with Cystic Fibrosis. Eur Radiol DOI:  10.1007/s00330-006-0257-7
  14. 14.
    Kreitner KF, Ley S, Kauczor HU, Mayer E, Kramm T, Pitton MB, Krummenauer F, Thelen M (2004) Chronic thromboembolic pulmonary hypertension: pre- and postoperative assessment with breath-hold MR imaging techniques. Radiol 232:535–543Google Scholar
  15. 15.
    Rominger MB, Dinkel HP, Bachmann GF (2002) [Comparison between fast MR flow quantification in breathhold technique in ascending aorta and pulmonary trunc with right and left ventricular cine-MRI for the assessment of stroke volumes in healthy volunteers]. Fortschr Rontgenstr 174:196–201CrossRefGoogle Scholar
  16. 16.
    Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671PubMedGoogle Scholar
  17. 17.
    Ley S, Kreitner KF, Morgenstern I, Thelen M, Kauczor HU (2002) Bronchopulmonary shunts in patients with chronic thromboembolic pulmonary hypertension: evaluation with helical CT and MR imaging. AJR Am J Roentgenol 179:1209–1215PubMedGoogle Scholar
  18. 18.
    Ley S, Puderbach M, Fink C, Eichinger M, Plathow C, Teiner S, Wiebel M, Muller FM, Kauczor HU (2005) Assessment of hemodynamic changes in the systemic and pulmonary arterial circulation in patients with cystic fibrosis using phase-contrast MRI. Eur Radiol 15:1575–1580PubMedCrossRefGoogle Scholar
  19. 19.
    Edelman RR, Hatabu H, Tadamura E, Li W, Prasad PV (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2:1236–1239PubMedCrossRefGoogle Scholar
  20. 20.
    Jakob PM, Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D (2004) Assessment of human pulmonary function using oxygen-enhanced T1 imaging in patients with cystic fibrosis. Magn Reson Med 51:1009–1016PubMedCrossRefGoogle Scholar
  21. 21.
    Kauczor HU, Ebert M, Kreitner KF, Nilgens H, Surkau R, Heil W, Hofmann D, Otten EW, Thelen M (1997) Imaging of the lungs using 3He MRI: preliminary clinical experience in 18 patients with and without lung disease. J Magn Reson Imaging 7:538–543PubMedGoogle Scholar
  22. 22.
    Donnelly LF, MacFall JR, McAdams HP, Majure JM, Smith J, Frush DP, Bogonad P, Charles HC, Ravin CE (1999) Cystic fibrosis: combined hyperpolarized 3He-enhanced and conventional proton MR imaging in the lung-preliminary observations. Radiol 212:885–889Google Scholar
  23. 23.
    Plathow C, Ley S, Fink C, Puderbach M, Heilmann M, Zuna I, Kauczor HU (2004) Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests. Invest Radiol 39:202–209PubMedCrossRefGoogle Scholar
  24. 24.
    Heussel CP, Sandner A, Voigtlander T, Heike M, Deimling M, Kuth R, Rupprecht T, Schreiber WG, Kauczor HU (2002) Prospective feasibility study of chest X-ray vs. thoracic MRI in breath-hold technique at an open low-field scanner. Fortschr Rontgenstr 174:854–861CrossRefGoogle Scholar
  25. 25.
    Abolmaali N, Schmidt H, Anjorin A, Posselt H-G, Vogl TJ (2002) Chrispin-Norman-score and Bhalla-score of patients with cystic fibrosis: Comparative study of chest radiographs and MR-Imaging. ECR 2002Google Scholar
  26. 26.
    Hebestreit A, Schulz G, Trusen A, Hebestreit H (2002) Follow up of infiltrates and atelectasis in Cystic Fibrosis by MRI. J Cystic Fibrosis 1(Suppl 1):113Google Scholar
  27. 27.
    Koumellis P, van Beek EJ, Woodhouse N, Fichele S, Swift AJ, Paley MN, Hill C, Taylor CJ, Wild JM (2005) Quantitative analysis of regional airways obstruction using dynamic hyperpolarized 3He MRI-preliminary results in children with cystic fibrosis. J Magn Reson Imaging 22:420–426PubMedCrossRefGoogle Scholar
  28. 28.
    Mayer D, Bartz D, Fischer J, Ley S, del Rio A, Thust S, Kauczor HU, Heussel CP (2004) Hybrid segmentation and virtual bronchoscopy based on CT images. Acad Radiol 11:551–565PubMedCrossRefGoogle Scholar
  29. 29.
    Stadler A, Jakob PM, Griswold M, Barth M, Bankier AA (2005) T1 mapping of the entire lung parenchyma: Influence of the respiratory phase in healthy individuals. J Magn Reson Imaging 21:759–764PubMedCrossRefGoogle Scholar
  30. 30.
    de Jong P (2005) Monitoring of Cystic Fibrosis Lung Disease using Computed Tomography Thesis, Erasmus University, RotterdamGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michael Puderbach
    • 1
    Email author
  • Monika Eichinger
    • 1
  • Julie Gahr
    • 2
  • Sebastian Ley
    • 1
    • 3
  • Siegfried Tuengerthal
    • 4
  • Astrid Schmähl
    • 4
  • Christian Fink
    • 1
    • 5
  • Christian Plathow
    • 1
    • 6
  • Matthias Wiebel
    • 7
  • Frank-Michael Müller
    • 2
  • Hans-Ulrich Kauczor
    • 1
  1. 1.Department of Radiology (E010), DKFZHeidelbergGermany
  2. 2.Department of Pediatric Pulmonology, Cystic Fibrosis Center & Infectious DiseasesChildrens Hospital, University HeidelbergHeidelbergGermany
  3. 3.Department of Pediatric RadiologyChildrens Hospital, University HeidelbergHeidelbergGermany
  4. 4.Department of RadiologyThoraxklinik am Universitätsklinikum HeidelbergHeidelbergGermany
  5. 5.Institute of Clinical RadiologyUniversity of Munich, Medical Center GrosshadernMunichGermany
  6. 6.Department of RadiologyUniversity of TübingenTübingenGermany
  7. 7.Department of PulmonologyThoraxklinik am Universitätsklinikum HeidelbergHeidelbergGermany

Personalised recommendations