European Radiology

, Volume 17, Issue 2, pp 321–329 | Cite as

The accuracy of 1- and 3-mm slices in coronary calcium scoring using multi-slice CT in vitro and in vivo

  • Georg Mühlenbruch
  • Ernst Klotz
  • Joachim E. Wildberger
  • Ralf Koos
  • Marco Das
  • Matthias Niethammer
  • Christian Hohl
  • Dagmar Honnef
  • Christoph Thomas
  • Rolf W. Günther
  • Andreas H. Mahnken


The accuracy of coronary calcium scoring using 16-row MSCT comparing 1- and 3-mm slices was assessed. A thorax phantom with calcium cylinder inserts was scanned applying a non-enhanced retrospectively ECG-gated examination protocol: collimation 12×0.75 mm; 120 kV; 133 mAseff. Thirty-eight patients were examined using the same scan protocol. Image reconstruction was performed with an effective slice thickness of 3 and 1 mm. The volume score, calcium mass and Agatston score were determined. Image noise was measured in both studies. The volume score and calcium mass varied less than the Agatston score. The overall measured calcium mass compared to the actual calcium mass revealed a relative difference of +2.0% for 1-mm slices and −1.2% for 3-mm slices. Due to increased image noise in thinner slices in the patient study (26.1 HU), overall calcium scoring with a scoring threshold of 130 HU was not feasible. Interlesion comparison showed significantly higher scoring results for thinner slices (all P<0.001). A similar accuracy comparing calcium scoring results of 1- and 3-mm slices was shown in the phantom study; therefore, the potentially necessary increase of the patient's dose in order to achieve assessable 1-mm slices with an acceptable image-to-noise-ratio appears not to be justified.


Computed tomography Coronary calcification Calcium scoring Slice thickness 


  1. 1.
    Frink RJ, Achor RW, Brown AL Jr, Kincaid OW, Brandenburg RO (1970) Significance of calcification of the coronary arteries. Am J Cardiol 26:241–247PubMedCrossRefGoogle Scholar
  2. 2.
    McCarthy JH, Palmer FJ (1974) Incidence and significance of coronary artery calcification. Br Heart J 36:499–506PubMedCrossRefGoogle Scholar
  3. 3.
    Rifkin RD, Parisi AF, Folland E (1979) Coronary calcification in the diagnosis of coronary artery disease. Am J Cardiol 44:141–147PubMedCrossRefGoogle Scholar
  4. 4.
    Heussel CP, Voigtlaender T, Kauczor H, Braun M, Meyer J, Thelen M (1998) Detection of coronary artery calcifications predicting coronary heart disease: comparison of fluoroscopy and spiral CT. Eur Radiol 8:1016–1024PubMedCrossRefGoogle Scholar
  5. 5.
    Rumberger JA, Sheedy PF, Breen JF, Schwartz RS (1997) Electron beam computed tomographic coronary calcium score cutpoints and severity of associated angiographic lumen stenosis. J Am Coll Cardiol 29:1542–1548PubMedCrossRefGoogle Scholar
  6. 6.
    Guerci AD, Spadaro LA, Goodman KJ et al (1998) Comparison of electron beam computed tomography scanning and conventional risk factor assessment for the prediction of angiographic coronary artery disease. J Am Coll Cardiol 32:673–679PubMedCrossRefGoogle Scholar
  7. 7.
    Rumberger JA, Brundage BH, Rader DJ, Kondos G (1999) Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 74:243–252PubMedCrossRefGoogle Scholar
  8. 8.
    Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92:2157–2162PubMedGoogle Scholar
  9. 9.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832PubMedCrossRefGoogle Scholar
  10. 10.
    Becker CR, Kleffel T, Crispin A et al (2001) Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. Am J Roentgenol 176:1295–1298Google Scholar
  11. 11.
    Carr JJ, Crouse JR 3rd, Goff DC Jr, D’Agostino RB Jr, Peterson NP, Burke GL (2000) Evaluation of subsecond gated helical CT for quantification of coronary artery calcium and comparison with electron beam CT. Am J Roentgenol 174:915–921Google Scholar
  12. 12.
    Becker CR, Jakobs TF, Aydemir S et al (2000) Helical and single-slice conventional CT versus electron beam CT for the quantification of coronary artery calcification. Am J Roentgenol 174:543–547Google Scholar
  13. 13.
    Kopp AF, Ohnesorge B, Becker C et al (2002) Reproducibility and accuracy of coronary calcium measurements with multi-detector row versus electron-beam CT. Radiology 225:113–119PubMedCrossRefGoogle Scholar
  14. 14.
    Horiguchi J, Nakanishi T, Ito K (2001) Quantification of coronary artery calcium using multidetector CT and a retrospective ECG-gating reconstruction algorithm. Am J Roentgenol 177:1429–1435Google Scholar
  15. 15.
    Mahnken AH, Wildberger JE, Sinha AM et al (2002) Variation of the coronary calcium score depending on image reconstruction interval and scoring algorithm. Invest Radiol 37:496–502PubMedCrossRefGoogle Scholar
  16. 16.
    Sanz J, Rius T, Kuschnir P et al (2005) The importance of end-systole for optimal reconstruction protocol of coronary angiography with 16-slice multidetector computed tomography. Invest Radiol 40:155–163PubMedCrossRefGoogle Scholar
  17. 17.
    Ulzheimer S, Kalender WA (2003) Assessment of calcium scoring performance in cardiac computed tomography. Eur Radiol 13:484–497PubMedGoogle Scholar
  18. 18.
    Janssen CH, Kuijpers D, Vliegenthart R, Overbosch J, van Dijkman PR, Zijlstra F, Oudkerk M (2005) Coronary artery calcification score by multislice computed tomography predicts the outcome of dobutamine cardiovascular magnetic resonance imaging. Eur Radiol 15:1128–1134PubMedCrossRefGoogle Scholar
  19. 19.
    van Ooijen PM, Vliegenthart R, Witteman JC, Oudkerk M (2005) Influence of scoring parameter settings on Agatston and volume scores for coronary calcification. Eur Radiol 15:102–110PubMedCrossRefGoogle Scholar
  20. 20.
    Mahnken AH, Muhlenbruch G, Koos R et al (2005) Influence of a small field-of-view size on the detection of coronary artery calcifications with MSCT: in vitro and in vivo study. Eur Radiol Aug 20:10.1007/s00330-005-2881-zGoogle Scholar
  21. 21.
    Yoon HC, Greaser LE 3rd, Mather R, Sinha S, McNitt-Gray MF, Goldin JG (1997) Coronary artery calcium: alternate methods for accurate and reproducible quantitation. Acad Radiol 4:666–673PubMedCrossRefGoogle Scholar
  22. 22.
    Callister TQ, Cooil B, Raya SP, Lippolis NJ, Russo DJ, Raggi P (1998) Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 208:807–814PubMedGoogle Scholar
  23. 23.
    Brown SJ, Hayball MP, Coulden RA (2000) Impact of motion artifact on the measurement of coronary calcium score. Br J Radiol 73:956–962PubMedGoogle Scholar
  24. 24.
    Vliegenthart R, Song B, Hofman A, Witteman JC, Oudkerk M (2003) Coronary calcification at electron-beam CT: effect of section thickness on calcium scoring in vitro and in vivo. Radiology 229:520–525PubMedCrossRefGoogle Scholar
  25. 25.
    Mao S, Child J, Carson S, Liu SC, Oudiz RJ, Budoff MJ (2003) Sensitivity to detect small coronary artery calcium lesions with varying slice thickness using electron beam tomography. Invest Radiol 38:183–187PubMedCrossRefGoogle Scholar
  26. 26.
    Hong C, Becker CR, Schoepf UJ, Ohnesorge B, Bruening R, Reiser MF (2002) Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced multi-detector row CT studies. Radiology 223:474–480PubMedCrossRefGoogle Scholar
  27. 27.
    Muhlenbruch G, Thomas C, Wildberger JE et al (2005) Effect of varying slice thickness on coronary calcium scoring with multislice computed tomography in vitro and in vivo. Invest Radiol 40:695–699PubMedCrossRefGoogle Scholar
  28. 28.
    Hong C, Bae KT, Pilgram TK, Suh J, Bradley D (2002) Coronary artery calcium measurement with multi-detector row CT: in vitro assessment of effect of radiation dose. Radiology 225:901–906PubMedCrossRefGoogle Scholar
  29. 29.
    Stamm G, Nagel HD (2002) CT-expo-a novel program for dose evaluation in CT. Rofo 174:1570–1576PubMedGoogle Scholar
  30. 30.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedGoogle Scholar
  31. 31.
    Lu B, Budoff MJ, Zhuang N et al (2002) Causes of interscan variability of coronary artery calcium measurements at electron-beam CT. Acad Radiol 9:654–661PubMedCrossRefGoogle Scholar
  32. 32.
    Cademartiri F, Mollet NR, Runza G, Bruining N, Hamers R, Somers P, Knaapen M, Verheye S, Midiri M, Krestin GP, de Feyter PJ (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15:1426–1431PubMedCrossRefGoogle Scholar
  33. 33.
    Muhlenbruch G, Wildberger JE, Koos R, Das M, Flohr TG, Niethammer M, Weiss C, Gunther RW, Mahnken AH (2005) Coronary calcium scoring using 16-row multislice computed tomography: nonenhanced versus contrast-enhanced studies in vitro and in vivo. Invest Radiol 40:148–154PubMedCrossRefGoogle Scholar
  34. 34.
    Mahnken AH, Wildberger JE, Simon J et al (2003) Detection of coronary calcifications: feasibility of dose reduction with a body weight-adapted examination protocol. Am J Roentgenol 181:533–538Google Scholar
  35. 35.
    Hong C, Bae KT, Pilgram TK (2003) Coronary artery calcium: accuracy and reproducibility of measurements with multi-detector row CT-assessment of effects of different thresholds and quantification methods. Radiology 227:795–801PubMedCrossRefGoogle Scholar
  36. 36.
    Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ (1998) Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 339:1972–1978PubMedCrossRefGoogle Scholar
  37. 37.
    Bielak LF, Sheedy PF 2nd, Peyser PA (2001) Coronary artery calcification measured at electron-beam CT: agreement in dual scan runs and change over time. Radiology 218:224–229PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Georg Mühlenbruch
    • 1
  • Ernst Klotz
    • 2
  • Joachim E. Wildberger
    • 1
  • Ralf Koos
    • 3
  • Marco Das
    • 1
  • Matthias Niethammer
    • 2
  • Christian Hohl
    • 1
  • Dagmar Honnef
    • 1
  • Christoph Thomas
    • 1
  • Rolf W. Günther
    • 1
  • Andreas H. Mahnken
    • 4
  1. 1.Department of Diagnostic RadiologyUniversity Hospital (RWTH) AachenAachenGermany
  2. 2.Siemens Medical Solutions, Computed TomographyForchheimGermany
  3. 3.Department of CardiologyUniversity Hospital (RWTH)AachenGermany
  4. 4.Applied Medical Engineering, Helmholtz InstituteRWTH-Aachen UniversityAachenGermany

Personalised recommendations