European Radiology

, Volume 16, Issue 8, pp 1659–1666 | Cite as

Fast magnetic resonance imaging of the knee using a parallel acquisition technique (mSENSE): a prospective performance evaluation

  • Karl-Friedrich Kreitner
  • Bernd Romaneehsen
  • Frank Krummenauer
  • Katja Oberholzer
  • Lars Peter Müller
  • Christoph Düber


The performance of a magnetic resonance (MR) imaging strategy that uses multiple receiver coil elements and integrated parallel imaging techniques (iPAT) in traumatic and degenerative disorders of the knee and to compare this technique with a standard MR imaging protocol was evaluated. Ninety patients with suspected internal derangements of the knee joint prospectively underwent MR imaging at 1.5 T. For signal detection, a 6-channel array coil was used. All patients were investigated with a standard imaging protocol consisting of different turbo spin-echo sequences proton density (PD), T2-weighted turbo spin echo (TSE) with and without fat suppression) in three imaging planes. All sequences were repeated with an integrated parallel acquisition technique (iPAT) using the modified sensitivity encoding (mSENSE) algorithm with an acceleration factor of 2. Two radiologists independently evaluated and scored all images with regard to overall image quality, artefacts and pathologic findings. Agreement of the parallel ratings between readers and imaging techniques, respectively, was evaluated by means of pairwise kappa coefficients that were stratified for the area of evaluation. Agreement between the parallel readers for both the iPAT imaging and the conventional technique, respectively, as well as between imaging techniques was found encouraging with inter-observer kappa values ranging between 0.78 and 0.98 for both imaging techniques, and the inter-method kappa values ranging between 0.88 and 1.00 for both clinical readers. All pathological findings (e.g. occult fractures, meniscal and cruciate ligament tears, torn and interpositioned Hoffa’s cleft, cartilage damage) were detected by both techniques with comparable performance. The use of iPAT lead to a 48% reduction of acquisition time compared with standard technique. Parallel imaging using mSENSE proved to be an efficient and economic tool for fast musculoskeletal MR imaging of the knee joint with comparable diagnostic performance to conventional MR imaging.


Knee joint MR imaging Parallel acquisition technique Modified sensitivity encoding 


  1. 1.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMedGoogle Scholar
  2. 2.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603PubMedCrossRefGoogle Scholar
  3. 3.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions. Magn Reson Med 47:1202–1210CrossRefPubMedGoogle Scholar
  4. 4.
    Heidemann RM, Özsarlak Ö, Parizel PM, Michiels J, Kiefer B, Jellus V, Müller M, Breuer J, Blaimer M, Griswold MA, Jakob PM (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13:2323–2337CrossRefPubMedGoogle Scholar
  5. 5.
    Weiger M, Pruessmann KP, Kassner A, Roditi G, Lawton T, Reid A, Boesiger P (2000) Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 12:671–677CrossRefPubMedGoogle Scholar
  6. 6.
    Pruessmann KP, Weiger M, Boesiger P (2001) Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson 3:1–9CrossRefPubMedGoogle Scholar
  7. 7.
    Kurihara Y, Yakushiji YK, Tani I, Nakajima Y, van Cauteren M (2002) Coil sensitivity encoding in MR imaging: advantages and disadvantages in clinical practice. Am J Roentgenol 178:1087–1091Google Scholar
  8. 8.
    Van den Brink JS, Watanabe Y, Kuhl CK, Chung T, Muthupillai R, van Cauteren M, Yamada K, Dymarkowski S, Bogaert J, Maki JH, Matos C, Casselmann JW, Hoogeveen RM (2003) Implications of SENSE in routine clinical practice. Eur J Rad 46:3–27CrossRefGoogle Scholar
  9. 9.
    Dietrich O, Nikolaou K, Wintersperger BJ, Flatz W, Nittka M, Petsch R, Kiefer B, Schoenberg SO (2002) IPAT: applications for fast and cardiovascular MR imaging. Electromedica 70:149–162Google Scholar
  10. 10.
    De Zwart JA, Ledden PJ, Kellmann P, van Gelderen P, Duyn JH (2002) Design of a SENSE-optimized high-sensity MRI receive coil for brain imaging. Magn Res Med 47:1218–1227CrossRefGoogle Scholar
  11. 11.
    Doebritz M, Radkow T, Nittka M, Bautz W, Fellner A (2002) VIBE with parallel acquisition technique: a novel approach to dynamic contrast-enhanced MR imaging of the liver. Fortschr Roentgenstr 174:738–741CrossRefGoogle Scholar
  12. 12.
    Oberholzer K, Romaneehsen B, Kunz P, Kramm T, Thelen M, Kreitner KF (2004) Contrast-enhanced 3D MR angiography of the pulmonary arteries with integrated parallel acquisition technique (iPAT) in patients with chronic-thromboembolic pulmonary hypertension CTEPH: sagittal or coronal acquisition? Fortschr Roentgenstr 176:605–609CrossRefGoogle Scholar
  13. 13.
    Bammer R, Schoenberg SO (2004) Current concepts and advances in clinical parallel magnetic resonance imaging. Top Magn Reson Imaging 15:129–158CrossRefPubMedGoogle Scholar
  14. 14.
    Gutberlet M, Schwinge K, Freyhardt P, Spors B, Grothoff M, Denecke T, Lüdemannn L, Noeske R, Niendorf T, Felix R (2005) Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D Cine magnetic resonance imaging: comparison of 1.5 T vs. 3.0 T. Eur Radiol 15:1586–1597CrossRefPubMedGoogle Scholar
  15. 15.
    Kwok WE, Zhong J, You Z, Seo G, Totterman SMS (2003) A four-element phased array coil for high resolution and parallel MR imaging of the knee. Magn Reson Imaging 21:961–967CrossRefPubMedGoogle Scholar
  16. 16.
    Romaneehsen B, Oberholzer K, Mueller LP, Kreitner KF (2003) Rapid musculoskeletal magnetic resonance imaging using integrated parallel acquisition techniques (IPAT): initial experiences. Fortschr Roentgenstr 175:1193–1197CrossRefGoogle Scholar
  17. 17.
    Niitsu M, Ikeda K (2003) Routine MR examination of the knee using parallel imaging. Clin Radiol 58:801–807CrossRefPubMedGoogle Scholar
  18. 18.
    Magee T, Shapiro M, Williams D, Ramnath RR, Simon J (2003) Usefulness of the simultaneous acquisition of spatial harmonics technique during MRI of the shoulder. Am J Roentgenol 181:961–964Google Scholar
  19. 19.
    Magee T, Shapiro M, Williams D (2004) Usefulness of the simultaneous acquisition of spatial harmonics technique for MRI of the knee. Am J Roentgenol 182:1411–1414Google Scholar
  20. 20.
    Helms CA (2002) The meniscus: recent advances in MR imaging of the knee. Am J Roentgenol 179:1115–1122PubMedGoogle Scholar
  21. 21.
    Osterle S (2003) Imaging of the knee. Imaging 15:217–241Google Scholar
  22. 22.
    Staebler A, Glaser C, Reiser M (2000) Musculoskeletal MR: knee. Eur Radiol 10:230–241CrossRefPubMedGoogle Scholar
  23. 23.
    Brennan P, Silman A (1992) Statistical methods for assessing observer variability in clinical measures. BMJ 304:1491–1494PubMedCrossRefGoogle Scholar
  24. 24.
    Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM (2004) SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 15:223–236CrossRefPubMedGoogle Scholar
  25. 25.
    Weiger M, Pruessmann KP, Leussler C, Roeschmann P, Boesiger P (2001) Specific coil design for SENSE: a six-element cardiac array. Magn Reson Med 45:495–504CrossRefPubMedGoogle Scholar
  26. 26.
    Kwok WE, Lo KK, Seo G, Totterman SMS (1999) A volume adjustable four-coil phased array for high resolution MR imaging of the hip. MAGMA 9:59–64PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson MW, Raghavan N, Seidenwurm DJ, Greenspan A, Drake C (1995) Evaluation of meniscal tears: fast spin-echo versus conventional spin-echo magnetic resonance imaging. Acad Radiol 2:209–214CrossRefPubMedGoogle Scholar
  28. 28.
    Escobedo EM, HunterJC, Zink-Brody GC, Wilson AJ, Harrison SD, Fisher DJ (1996) Usefulness of turbo spin-echo MR imaging in the evaluation of meniscal tears: comparison with a conventional spin-echo sequence. Am J Roentgenol 167:1223–1227Google Scholar
  29. 29.
    Cheung L, Li K, Hollett M, Bergmann A, Herfkens R (1997) Mensical tears of the knee: value of fast spin-echo vs. conventional spin-echo pulse sequences. Radiology 203:508–512PubMedGoogle Scholar
  30. 30.
    Sodickson DK, Griswold MA, Jakob PM, Edelmann RR, Manning WJ (1999) Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging. Magn Reson Med 41:1009–1022CrossRefPubMedGoogle Scholar
  31. 31.
    Katscher U, Börnert P, Leussler C, van den Brink JS (2003) Transmit SENSE. Magn Reson Med 49:144–150CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Karl-Friedrich Kreitner
    • 1
  • Bernd Romaneehsen
    • 1
  • Frank Krummenauer
    • 2
  • Katja Oberholzer
    • 1
  • Lars Peter Müller
    • 3
  • Christoph Düber
    • 1
  1. 1.Department of Diagnostic and Interventional RadiologyJohannes Gutenberg-University MainzMainzGermany
  2. 2.Clinical Epidemiology and Health Economy Unit, Medical FacultyDresden University of TechnologyDresdenGermany
  3. 3.Department of Trauma SurgeryJohannes Gutenberg-University MainzMainzGermany

Personalised recommendations