European Radiology

, Volume 17, Issue 1, pp 73–80 | Cite as

Dual breath-hold magnetic resonance cine evaluation of global and regional cardiac function

  • Bernd J. Wintersperger
  • Spencer Sincleair
  • Val M. Runge
  • Olaf Dietrich
  • Armin Huber
  • Maximilian F. Reiser
  • Stefan O. Schoenberg


The purpose of our study was to evaluate the accuracy of a multislice cine magnetic resonance imaging (MRI) technique with parallel imaging in regard to global and regional left ventricular function. Forty-two individuals underwent cine MRI on a 1.5-tesla scanner. Cine MRI used a steady-state free precession technique and was performed as a single-slice technique (nonTSENSE cine) and an accelerated multislice technique (TSENSE cine) with five slices per breath-hold. End diastolic volume (EDV), end systolic volume (ESV), and ejection fraction (EF) were evaluated for all data sets and in regard to regional wall motion and regional wall motion analysis, and quantitative regional wall thickness and systolic thickening were also assessed. EDV, ESV, and EF based on TSENSE cine showed excellent correlation to the nonTSENSE cine approach (all r2=0.99, P<0.001). While EDV evaluations showed a small underestimation for TSENSE cine, ESV and EF showed accurate results compared with nonTSENSE cine. Both readers showed good agreement (κ=0.72) in regional wall motion assessment comparing both techniques. Data acquisition for the multislice approach was significantly shorter (∼75%) that in single-slice cine. We conclude that accurate evaluation of regional wall motion and left ventricular EF is possible using accelerated multislice cine MR with high spatial and temporal resolution.


Heart Volume Magnetic resonance (MR) Cine study Volume measurement Parallel imaging 


  1. 1.
    Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834PubMedGoogle Scholar
  2. 2.
    Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14:230–236PubMedCrossRefGoogle Scholar
  3. 3.
    Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF (2001) MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269PubMedGoogle Scholar
  4. 4.
    Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ (2002) Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223:789–797PubMedCrossRefGoogle Scholar
  5. 5.
    Francois CJ, Fieno DS, Shors SM, Finn JP (2004) Left ventricular mass: manual and automatic segmentation of true FISP and FLASH cine MR images in dogs and pigs. Radiology 230:389–395PubMedCrossRefGoogle Scholar
  6. 6.
    Lee VS, Resnick D, Bundy JM, Simonetti OP, Lee P, Weinreb JC (2002) Cardiac function: MR evaluation in one breath hold with real-time true fast imaging with steady-state precession. Radiology 222:835–842PubMedCrossRefGoogle Scholar
  7. 7.
    Wintersperger BJ, Nikolaou K, Dietrich O et al (2003) Single breath-hold real-time cine MR imaging: improved temporal resolution using generalized autocalibrating partially parallel acquisition (GRAPPA) algorithm. Eur Radiol 13:1931–1936PubMedCrossRefGoogle Scholar
  8. 8.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRefGoogle Scholar
  9. 9.
    Hunold P, Maderwald S, Ladd ME, Jellus V, Barkhausen J (2004) Parallel acquisition techniques in cardiac cine magnetic resonance imaging using TrueFISP sequences: comparison of image quality and artifacts. J Magn Reson Imaging 20:506–511PubMedCrossRefGoogle Scholar
  10. 10.
    Reeder SB, Wintersperger BJ, Dietrich O et al (2005) Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: Application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 54:748–754PubMedCrossRefGoogle Scholar
  11. 11.
    Wintersperger BJ, Bauner K, Reeder SB et al (2006) Cardiac steady-state free precession CINE magnetic resonance imaging at 3.0 tesla: impact of parallel imaging acceleration on volumetric accuracy and signal parameters. Invest Radiol 41:141–147Google Scholar
  12. 12.
    Kellman P, Epstein FH, McVeigh ER (2001) Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 45:846–852PubMedCrossRefGoogle Scholar
  13. 13.
    Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRefGoogle Scholar
  14. 14.
    Kellman P, Derbyshire JA, Agyeman KO, McVeigh ER, Arai AE (2004) Extended coverage first-pass perfusion imaging using slice-interleaved TSENSE. Magn Reson Med 51:200–204PubMedCrossRefGoogle Scholar
  15. 15.
    Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542PubMedCrossRefGoogle Scholar
  16. 16.
    Geleijnse ML, Fioretti PM, Roelandt JR (1997) Methodology, feasibility, safety and diagnostic accuracy of dobutamine stress echocardiography. J Am Coll Cardiol 30:595–606PubMedCrossRefGoogle Scholar
  17. 17.
    Brennan P, Silman A (1992) Statistical methods for assessing observer variability in clinical measures. BMJ 304:1491–1494PubMedCrossRefGoogle Scholar
  18. 18.
    Bammer R, Schoenberg SO (2004) Current concepts and advances in clinical parallel magnetic resonance imaging. Top Magn Reson Imaging 15:129–158PubMedCrossRefGoogle Scholar
  19. 19.
    Schoenberg SO, Rieger J, Weber CH et al (2005) High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology 235:687–698PubMedCrossRefGoogle Scholar
  20. 20.
    Kramer H, Schoenberg SO, Nikolaou K et al (2005) Cardiovascular screening with parallel imaging techniques and a whole-body MR imager. Radiology 236:300–310PubMedCrossRefGoogle Scholar
  21. 21.
    Fink C, Puderbach M, Bock M et al (2004) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231:175–184PubMedCrossRefGoogle Scholar
  22. 22.
    Huber ME, Kozerke S, Pruessmann KP, Smink J, Boesiger P (2004) Sensitivity-encoded coronary MRA at 3T. Magn Reson Med 52:221–227PubMedCrossRefGoogle Scholar
  23. 23.
    Thiele H, Nagel E, Paetsch I et al (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367PubMedCrossRefGoogle Scholar
  24. 24.
    Sprung K (2005) Basic techniques of cardiac MR. Eur Radiol 15(Suppl 2):B10–B16PubMedGoogle Scholar
  25. 25.
    Semelka RC, Tomei E, Wagner S et al (1990) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 119:1367–1373PubMedCrossRefGoogle Scholar
  26. 26.
    Semelka RC, Tomei E, Wagner S et al (1990) Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 174:763–768PubMedGoogle Scholar
  27. 27.
    Pattynama PM, Lamb HJ, van der Velde EA, van der Wall EE, de Roos A (1993) Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis. Radiology 187:261–268PubMedGoogle Scholar
  28. 28.
    Shors SM, Fung CW, Francois CJ, Finn JP, Fieno DS (2004) Accurate quantification of right ventricular mass at MR imaging by using cine true fast imaging with steady-state precession: study in dogs. Radiology 230:383–388PubMedCrossRefGoogle Scholar
  29. 29.
    Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329PubMedCrossRefGoogle Scholar
  30. 30.
    Papavassiliu T, Kuhl HP, Schroder M et al (2005) Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 236:57–64PubMedCrossRefGoogle Scholar
  31. 31.
    Fieno DS, Jaffe WC, Simonetti OP, Judd RM, Finn JP (2002) TrueFISP: assessment of accuracy for measurement of left ventricular mass in an animal model. J Magn Reson Imaging 15:526–531PubMedCrossRefGoogle Scholar
  32. 32.
    Nagel E, Lehmkuhl HB, Bocksch W et al (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770PubMedGoogle Scholar
  33. 33.
    Plein S, Smith WH, Ridgway JP et al (2001) Qualitative and quantitative analysis of regional left ventricular wall dynamics using real-time magnetic resonance imaging: comparison with conventional breath-hold gradient echo acquisition in volunteers and patients. J Magn Reson Imaging 14:23–30PubMedCrossRefGoogle Scholar
  34. 34.
    Kellman P, McVeigh ER (2005) Image reconstruction in SNR units. In: Proceedings of the 13th Annual Meeting of ISMRM. Miami Beach, FL, abstract 2430Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bernd J. Wintersperger
    • 1
  • Spencer Sincleair
    • 2
  • Val M. Runge
    • 2
  • Olaf Dietrich
    • 1
  • Armin Huber
    • 1
  • Maximilian F. Reiser
    • 1
  • Stefan O. Schoenberg
    • 1
  1. 1.Department of Clinical RadiologyUniversity Hospitals—Grosshadern, Ludwig-Maximilians-UniversityMunichGermany
  2. 2.Department of RadiologyScott & White Clinic & Hospital, Texas A&M University Health Science CenterTempleUSA

Personalised recommendations