European Radiology

, Volume 17, Issue 1, pp 259–264

Application and assessment of a robust elastic motion correction algorithm to dynamic MRI

  • K.-H. Herrmann
  • S. Wurdinger
  • D. R. Fischer
  • I. Krumbein
  • M. Schmitt
  • G. Hermosillo
  • K. Chaudhuri
  • A. Krishnan
  • M. Salganicoff
  • W. A. Kaiser
  • J. R. Reichenbach
Magnetic Resonance

Abstract

The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).

Keywords

Motion correction MR mammography MR angiography Motion artifacts Registration 

References

  1. 1.
    Heywang-Köbrunner SH, Viehweg P, Heinig A, Kächler C (1997) Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol 24:94–108PubMedCrossRefGoogle Scholar
  2. 2.
    Teifke A, Hlawatsch A, Beier T, Vomweg TW, Schadmand S, Schmidt M, Lehr HA, Thelen M (2002) Undetected malignancies of the breast: dynamic contrast-enhanced MR imaging at 1.0 T. Radiology 224:881–888PubMedCrossRefGoogle Scholar
  3. 3.
    Fischer H, Otte M, Ehritt-Braun C, Laubenberger J, Hennig J (1999) Local elastic matching and pattern recognition in MR mammography. Int J Imaging Syst Technol 10:199–206CrossRefGoogle Scholar
  4. 4.
    Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–721CrossRefPubMedGoogle Scholar
  5. 5.
    Lucht L, Knopp MV, Brix G (2000) Elastic matching of dynamic MR mammographic images. Magn Reson Med 43:9–16CrossRefPubMedGoogle Scholar
  6. 6.
    Tanner C, Schnabel JA, Clarkson MJ, Rueckert D, Hill DLG, Hawkes DJ (2000) Volume and shape preservation of enhancing lesions when applying non-rigid registration to a time series of contrast enhancing MR breast images. In: Delp SL, DiGoia AM, Jaramaz B (eds) Lecture Notes in Computer Science, vol 1935 – Third Int. Conf. on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin Heidelberg New York, pp 327–337Google Scholar
  7. 7.
    Schnabel JA, Tanner C, Castellano-Smith AD, Degenhard A, Leach MO, Hose DR, Hill DL, Hawkes DJ (2003) Validation of nonrigid image registration using finite-element methods: application to breast MR images. IEEE Trans Med Imaging 22:238–247CrossRefPubMedGoogle Scholar
  8. 8.
    Lu W, Chen ML, Olivera GH, Ruchala KJ, Mackie TR (2004) Fast free-form deformable registration via calculus of variations. Phys Med Biol 49:3067–3087CrossRefPubMedGoogle Scholar
  9. 9.
    He J, Christensen GE (2003) Large deformation inverse consistent elastic image registration. Inf Process Med Imaging 18:438–449PubMedGoogle Scholar
  10. 10.
    Press William H, Teukolsky Saul A, Vetterling William T, Flannery Brian P (1988) Numerical recipes in C. Cambridge University Press, New YorkGoogle Scholar
  11. 11.
    Hermosillo Gerardo (2002) Variational methods for multimodal image matching. PhD thesis, Institut National de Recherche en Informatique et en Automatique (INRIA), NiceGoogle Scholar
  12. 12.
    Reichenbach JR, Hopfe J, Bellemann ME, Kaiser WA (2002) Development and validation of an algorithm for registration of serial 3D MR breast data sets. MAGMA 14:249–257PubMedCrossRefGoogle Scholar
  13. 13.
    Rohlfing T, Maurer CR Jr, Bluemke DA, Jacobs MA (2003) Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Trans Med Imaging 22:730–741CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • K.-H. Herrmann
    • 1
  • S. Wurdinger
    • 2
  • D. R. Fischer
    • 2
  • I. Krumbein
    • 2
  • M. Schmitt
    • 3
  • G. Hermosillo
    • 4
  • K. Chaudhuri
    • 4
  • A. Krishnan
    • 4
  • M. Salganicoff
    • 4
  • W. A. Kaiser
    • 2
  • J. R. Reichenbach
    • 1
  1. 1.Medical Physics Group, Institute for Diagnostic and Interventional RadiologyFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institute for Diagnostic and Interventional RadiologyFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Siemens Medical SolutionsErlangenGermany
  4. 4.Siemens Computer Aided Diagnosis and TherapyMalvernUSA

Personalised recommendations