European Radiology

, Volume 16, Issue 9, pp 2083–2091 | Cite as

Combined T2* and T1 measurements for improved perfusion and permeability studies in high field using dynamic contrast enhancement

  • Cedric de Bazelaire
  • Neil M. Rofsky
  • Guillaume Duhamel
  • Jingbo Zhang
  • M. Dror Michaelson
  • Daniel George
  • David C. Alsop
Magnetic Resonance

Abstract

This study analyzed the T2* effect of extracellularly distributed gadolinium contrast agents in arterial blood during tumor studies using T1-weighted sequences at high field strength. A saturation-prepared dual echo sequence with echo times of 1.5 and 3.5 ms was employed at 3 T to simultaneously characterize T1 and T2* of arterial blood during bolus administration of Gd-DTPA in 28 patients with body tumors. T2* effect and T1 effect of Gd-DTPA on image intensity of whole blood were calibrated in human blood samples with different concentrations of contrast agent. T2* was used to estimate concentration near the peak of the bolus. T1 was used to measure lower concentrations when T2* was not significant. T2* was measurable on calibration curves for Gd-DTPA concentrations higher than 4 mM. This concentration was exceeded in 18 patients. The mean signal intensity reduction because of T2* effect was estimated at 22±14% of the T2* compensated signal. Using T2* measurements reduced underestimations of peak arterial Gd-DTPA concentration (59±38%) and overestimation of permeability Ktrans (58%). The T2* effect of gadolinium contrast agents should therefore be accounted for when performing tumors study with T1-weighted sequences at high field strength.

Keywords

Dynamic contrast enhancement T2* Tumor Input function 

References

  1. 1.
    Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp M, Larsson HBW, Lee TY, Mayr NA, Parker GJM, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T-1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232CrossRefPubMedGoogle Scholar
  2. 2.
    Larsson HBW, Stubgaard M, Sondergaard L, Henriksen O (1994) In-vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR-imaging. J Magn Reson Imaging 4:433–440PubMedCrossRefGoogle Scholar
  3. 3.
    Brasch R, Turetschek K (2000) MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report. Eur J Radiol 34:148–155CrossRefPubMedGoogle Scholar
  4. 4.
    FritzHansen T, Rostrup E, Larsson HBW, Sondergaard L, Ring P, Henriksen O (1996) Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 36:225–231PubMedCrossRefGoogle Scholar
  5. 5.
    Fritz-Hansen T, Rostrup E, Ring PB, Larsson HBW (1998) Quantification of gadolinium-DTPA concentrations for different inversion times using an IR-turbo flash pulse sequence: A study on optimizing multislice perfusion imaging. Magn Reson Imaging 16:893–899CrossRefPubMedGoogle Scholar
  6. 6.
    Osch MJP van, Vonken E, Viergever MA, van der Grond J, Bakker CJG (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49:1067–1076CrossRefPubMedGoogle Scholar
  7. 7.
    Alsop D, Watkins R, Greenman R, Schenck J, Lenkinski R (2001) In vivo mapping of B1 uniformity produced by a whole body 3 T RF coil. In: Alsop D, Watkins R, Greenman R, Schenck J, Lenkinski R (eds) Proceedings of the 9th Annual Meeting of ISMRM, Glasgow, p 1094Google Scholar
  8. 8.
    azelaire CM de, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659PubMedCrossRefGoogle Scholar
  9. 9.
    Kuperman VY, Alley MT (1999) Differentiation between the effects of T-1 and T-2* shortening in contrast-enhanced MRI of the breast. J Magn Reson Imaging 9:172–176CrossRefPubMedGoogle Scholar
  10. 10.
    Tofts PS, Kermode AG (1991) Measurement of the blood-brain-barrier permeability and leakage space using dynamic MR imaging. I. Fundamental concepts. Magn Reson Med 17:357–367PubMedCrossRefGoogle Scholar
  11. 11.
    Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15:946–959CrossRefPubMedGoogle Scholar
  12. 12.
    Ye FQ, Allen PS (1995) Relaxation enhancement of the transverse magnetization of water protons in paramagnetic suspensions of red-blood-cells. Magn Reson Med 34:713–720PubMedCrossRefGoogle Scholar
  13. 13.
    Daldrup-Link HE, Brasch RC (2003) Macromolecular contrast agents for MR mammography: current status. Eur Radiol 13:354–365PubMedGoogle Scholar
  14. 14.
    Osch MJ van, Vonken EJ, Bakker CJ, Viergever MA (2001) Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 45:477–485CrossRefPubMedGoogle Scholar
  15. 15.
    Miyati T, Banno T, Mase M, Kasai H, Shundo H, Imazawa M, Ohba S (1997) Dual dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 7:230–235PubMedCrossRefGoogle Scholar
  16. 16.
    Uematsu H, Maeda M, Sadato N, Matsuda T, Ishimori Y, Koshimoto Y, Yamada H, Kimura H, Kawamura Y, Hayashi N, Yonekura Y, Ishii Y (2000) Vascular permeability: quantitative measurement with double-echo dynamic MR imaging—theory and clinical application. Radiology 214:912–917PubMedGoogle Scholar
  17. 17.
    Vonken E, van Osch MJP, Bakker CJG, Viergever MA (2000) Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43:820–827CrossRefPubMedGoogle Scholar
  18. 18.
    Just N, D’Arcy JA, Collins DJ, Leach MO (2002) In-vivo measurement of the arterial input function using a T2*-weighted image acquired with a dual gradient echo sequence. In: Just N, D’Arcy JA, Collins DJ Leach MO (eds) Proceedings of the 10th Annual Meeting of ISMRM, Honolulu, p 2128Google Scholar
  19. 19.
    Uematsu H, Maeda M (2005) Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur Radiol (14 June, epub ahead of print)Google Scholar
  20. 20.
    Just N, Koh D, Collins DJ, Leach MO (2003) Gd-DTPA Calibration curves in human blood as a function of haematocrit for the quantification of the arterial input function in femoral arteries. In: Just N, Koh D, Collins DJ, Leach MO (eds) Proceedings of the 11th Annual Meeting of ISMRM, Toronto, p 1257Google Scholar
  21. 21.
    Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues—the static dephasing regime. Magn Reson Med 32:749–763PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Cedric de Bazelaire
    • 1
    • 2
  • Neil M. Rofsky
    • 2
  • Guillaume Duhamel
    • 2
  • Jingbo Zhang
    • 2
  • M. Dror Michaelson
    • 3
  • Daniel George
    • 4
  • David C. Alsop
    • 2
  1. 1.Radiology DepartmentSaint Louis HospitalParisFrance
  2. 2.Department of RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolCambridgeUSA
  3. 3.Department of Hematology/OncologyMassachusetts General HospitalBostonUSA
  4. 4.Department of Adult OncologyDana Farber Cancer InstituteBostonUSA

Personalised recommendations