European Radiology

, Volume 16, Issue 9, pp 2067–2073 | Cite as

Higher sensitivity in the detection of inflammatory brain lesions in patients with clinically isolated syndromes suggestive of multiple sclerosis using high field MRI: an intraindividual comparison of 1.5 T with 3.0 T

  • Mike P. WattjesEmail author
  • Götz G. Lutterbey
  • Michael Harzheim
  • Jürgen Gieseke
  • Frank Träber
  • Luisa Klotz
  • Thomas Klockgether
  • Hans H. Schild


The purpose of this study was to determine the sensitivities in the detection of inflammatory lesions in patients with clinically isolated syndromes suggestive of multiple sclerosis at 3.0 T and 1.5 T. MR imaging of 40 patients at both field strengths was performed in separate sessions including contiguous axial slices of T2 turbo spin-echo (T2 TSE), fluid-attenuated-inversion-recovery (FLAIR) and pre- and postcontrast T1 spin-echo (T1 SE). Inflammatory lesions >3 mm in size were counted and categorized according to their anatomic location. Lesion conspicuity was assessed on a five-point scale. At 3.0 T, 13% more white matter lesions could be identified on the FLAIR sequence and on the T2 TSE sequence. Compared to 1.5 T 7.5% more contrast-enhancing lesions were detected at 3.0 T. The higher detection rate at 3.0 T was significant for the infratentorial (p=0.02) and juxtacortical (p<0.01) region on the FLAIR as well as for the infratentorial (p=0.03), juxtacortical (p=0.02) and periventricular (p=0.03) region on the T2 TSE sequence. The lesion conspicuity was significantly better at 3.0 T for FLAIR and T2 TSE sequences (p<0.01; p=0.01). In conclusion, high-field MRI at 3.0 T provides a significantly higher detection rate of inflammatory brain lesions especially in the infratentorial, juxtacortical and periventricular anatomic region.


High-field MRI Multiple sclerosis Clinically isolated syndrome Magnetic field strength 



The authors thank Hanno Schimikowski for help establishing the figures and Renate Blömer for the technical assistance.


  1. 1.
    Paty DW, Oger JJF, Kastrukoff LF et al (1988) MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology 38:180–185PubMedGoogle Scholar
  2. 2.
    Omerod IEC, McDonald WI, duBoulay EPGH et al (1986) Disseminated lesions at presentation with optic neuritis. J Neurol Neurosurg Psychiatry 49:124–127Google Scholar
  3. 3.
    Omerod IEC, Miller DH, McDonald WI et al (1987) The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. Brain 110:1579–1616CrossRefGoogle Scholar
  4. 4.
    Barkhof F, Filippi M, Miller DH et al (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120:2059–2069PubMedCrossRefGoogle Scholar
  5. 5.
    Tintoré M, Rovira A, Martinez MJ et al (2000) Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict conversion to clinically definite multiple sclerosis. AJNR Am J Neuroradiol 21:702–706PubMedGoogle Scholar
  6. 6.
    McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127PubMedCrossRefGoogle Scholar
  7. 7.
    Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for Multiple Sclerosis: Revisions to the “McDonald criteria”. Ann Neurol 58:840–846PubMedCrossRefGoogle Scholar
  8. 8.
    Dalton CM, Brex PA, Miszkiel KA et al (2002) Application of the New McDonald Criteria to patients with Clinically Isolated Syndromes Suggestive of Multiple Sclerosis. Ann Neurol 52:47–53PubMedCrossRefGoogle Scholar
  9. 9.
    Tintoré M, Rovira A, Río J et al (2003) New diagnostic criteria for multiple sclerosis. Application in first demyelinating episode. Neurology 60:27–30PubMedCrossRefGoogle Scholar
  10. 10.
    Yoursy TA, Filippi M, Becker C, Horsfield MA, Voltz R (1997) Comparison of MR pulse sequences in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 18:959–963Google Scholar
  11. 11.
    Filippi M, Yousry T, Baratti C, Horsfield, MA, Mammi S, Becker C et al (1996) Quantitative assessment of MRI lesion load in multiple sclerosis: A comparison of conventional spin-echo with fast fluid-attenuated inversion recovery. Brain 119:1349–1355PubMedCrossRefGoogle Scholar
  12. 12.
    Wattjes MP, Lutterbey GG, Harzheim M et al (2006) Imaging of inflammatory lesions at 3.0 tesla in patients with clinically isolated syndromes suggestive of multiple sclerosis: A comparison of fluid-attenuated inversion recovery with T2 turbo spin-echo. Eur Radiol Mar 21 [epub ahead of print]Google Scholar
  13. 13.
    Filippi M, Horsfield MA, Campi A, Mammi S, Pereira C, Comi G (1995) Resolution-dependent estimates of lesion volumes in magnetic resonance imaging studies of the brain in multiple sclerosis. Ann Neurol 38:749–754PubMedCrossRefGoogle Scholar
  14. 14.
    Filippi M, van Waesberghe JH, Horsfield MA et al (1997) Interscanner variation in brain MRI lesion load measurements in MS. Neurology 49:371–377PubMedGoogle Scholar
  15. 15.
    Schima W, Wimberger D, Schneider B et al (1993) The importance of magnetic field strength in the MR diagnosis of multiple sclerosis: a comparison of 0.5 T and 1.5 T. Fortschr Röntgenstr 158:368–371CrossRefGoogle Scholar
  16. 16.
    Lee DH, Vellet AD, Eliasziw M et al (1995) MR imaging field: prospective evaluation of the diagnostic accuracy of MR for diagnosis of multiple sclerosis at 0.5 and 1.5 T. Radiology 194:257–262PubMedGoogle Scholar
  17. 17.
    Keiper MD, Grossmann RI, Hirsch JA et al (1998) MR identification of white matter abnormalities in multiple sclerosis: a comparison between 1.5 T and 4 T. AJNR Am J Neuroradiol 19:1489–1493PubMedGoogle Scholar
  18. 18.
    Sicotte NL, Voskuhl RR, Bouvier S et al (2003) Comparison of multiple sclerosis lesions at 1.5 and 3.0 T. Invest Radiol 38:423–427PubMedCrossRefGoogle Scholar
  19. 19.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452PubMedGoogle Scholar
  20. 20.
    Traboulsee A, Li D, Frank J, Simon J, Coyle P, Wollinsky J, Paty D (2003) Consortium of MS Centers: MRI Protocol for the diagnosis and Follow-up of MS.
  21. 21.
    Jacobs LD, Beck RW, Simon JH et al (2000) Intramuscular Interferon Beta-1a Therapy initiated during a first demyeliniating event in multiple sclerosis. N Engl J Med 343:898–904PubMedCrossRefGoogle Scholar
  22. 22.
    Barkhof F, Filippi M, van Waesberghe JH et al (1999) Interobserver agreement for diagnostic MRI criteria in suspected multiple sclerosis. Neuroradiology 41:347–350PubMedCrossRefGoogle Scholar
  23. 23.
    Schild H (2005) Clinical highfield MRI. Fortschr Röntgenstr 177:621–631CrossRefGoogle Scholar
  24. 24.
    Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15:639–644CrossRefGoogle Scholar
  25. 25.
    Krautmacher C, Willinek WA, Tschampa HJ et al (2005) Brain tumors: full- and half-dose contrast-enhanced MR imaging at 3.0 T compared with 1.5 T—initial experience. Radiology 237:1014–1019PubMedCrossRefGoogle Scholar
  26. 26.
    Frohman EM, Goodin DS, Calabresi PA et al (2003) The utility of MRI in suspected MS. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 61:602–611PubMedGoogle Scholar
  27. 27.
    Miller DH, Filippi M, Fazekas F et al (2004) Role of magnetic resonance imaging within diagnostic criteria for multiple sclerosis. Ann Neurol 56:273–278PubMedCrossRefGoogle Scholar
  28. 28.
    Minneboo A, Barkhof F, Polman CH et al (2004) Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis. Arch Neurol 61:217–221PubMedCrossRefGoogle Scholar
  29. 29.
    Wattjes MP, Harzheim M, Kuhl CK et al (2006) Does high-field MRI have an influence on the classification of patients with clinically isolated syndromes according to current diagnostic magnetic resonance imaging criteria for multiple sclerosis? AJNR Am J Neuroradiol (in press)Google Scholar
  30. 30.
    Gizewski ER, Maderwald S, Wanke I et al (2005) Comparison of volume, four- and eight channel head coils using standard and parallel imaging. Eur Radiol 15:1555–1562PubMedCrossRefGoogle Scholar
  31. 31.
    de Zwart JA, Ledden PJ, Kellman P et al (2002) Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging. Magn Reson Med 47:1218–1227PubMedCrossRefGoogle Scholar
  32. 32.
    Lutterbey G, Gieseke J, von Falkenhausen M et al (2005) Lung MRI at 3.0T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease. Eur Radiol 15:324–328PubMedCrossRefGoogle Scholar
  33. 33.
    Gutberlet M, Schwinge K, Freyhardt P et al (2005) Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2 D CINE magnetic resonance imaging: comparison of 1.5 T vs. 3.0 T. Eur Radiol 15:1586–1597PubMedCrossRefGoogle Scholar
  34. 34.
    Moarakkabati-Spitz N, Gieseke J, Kuhl C, Lutterbey G et al (2005) 3.0 T high-field magnetic resonance imaging of the female pelvis: preliminary experiences. Eur Radiol 15:639–644CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mike P. Wattjes
    • 1
    Email author
  • Götz G. Lutterbey
    • 1
  • Michael Harzheim
    • 2
  • Jürgen Gieseke
    • 1
    • 3
  • Frank Träber
    • 1
  • Luisa Klotz
    • 2
  • Thomas Klockgether
    • 2
  • Hans H. Schild
    • 1
  1. 1.Department of RadiologyUniversity of BonnBonnGermany
  2. 2.Department of NeurologyUniversity of BonnBonnGermany
  3. 3.Philips Medical SystemsBestThe Netherlands

Personalised recommendations