European Radiology

, 16:1651

Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars

  • Thierry A. G. M. Huisman
  • Thomas Loenneker
  • Gerd Barta
  • Matthias E. Bellemann
  • Juergen Hennig
  • Joachim E. Fischer
  • Kamil A. Il’yasov
Magnetic Resonance


The objectives were to study the “impact” of the magnetic field strength on diffusion tensor imaging (DTI) metrics and also to determine whether magnetic-field-related differences in T2-relaxation times of brain tissue influence DTI measurements. DTI was performed on 12 healthy volunteers at 1.5 and 3.0 Tesla (within 2 h) using identical DTI scan parameters. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured at multiple gray and white matter locations. ADC and FA values were compared and analyzed for statistically significant differences. In addition, DTI measurements were performed at different echo times (TE) for both field strengths. ADC values for gray and white matter were statistically significantly lower at 3.0 Tesla compared with 1.5 Tesla (% change between −1.94% and −9.79%). FA values were statistically significantly higher at 3.0 Tesla compared with 1.5 Tesla (% change between +4.04 and 11.15%). ADC and FA values are not significantly different for TE=91 ms and TE=125 ms. Thus, ADC and FA values vary with the used field strength. Comparative clinical studies using ADC or FA values should consequently compare ADC or FA results with normative ADC or FA values that have been determined for the field strength used.


Diffusion tensor imaging Apparent diffusion coefficient Fractional anisotropy Magnetic field strength 


  1. 1.
    Le Bihan D, Breton E, Syrota A (1985) Imagerie de diffusion par résonance magnétique nucléaire. C R Acad Sci [III] 301:1109–1112Google Scholar
  2. 2.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion (IVIM) MR imaging. Radiology 168:497–505PubMedGoogle Scholar
  3. 3.
    Le Bihan D, Turner R, Pekar J, Moonen CTW (1991) Diffusion and perfusion imaging by gradient sensitization: design, strategy and significance. J Magn Reson Imaging 1:7–28PubMedCrossRefGoogle Scholar
  4. 4.
    Le Bihan D (1990) Diffusion/perfusion MR imaging of the brain: from structure to function. Radiology 177:328–329PubMedGoogle Scholar
  5. 5.
    Sorensen AG, Buonanno FS, Gonzalez RG, Schwamm LH, Lev MH, Huang-Hellinger FRH, Reese TG, Weiskoff RM, Davis TL, Suwanwela N, Can U, Moreira JA, Copen WA, Look RB, Finkelstein SP, Rosen BR, Koroshetz WJ (1996) Hyperacute stroke: evaluation with combined multislice diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 199:391–401PubMedGoogle Scholar
  6. 6.
    Lovblad KO, Baird AE, Schlaug G, Benfield A, Siewert B, Voetsch B, Connor A, Burzynski C, Edelman RR, Warach S (1997) Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging correlate with clinical outcome. Ann Neurol 42:164–170PubMedCrossRefGoogle Scholar
  7. 7.
    Sorensen AG, Wu O, Copen WA, David TS, Gonzalez RG, Koroshetz WJ, Reese TG, Rosen BR, Wedeen VJ, Weiskoff RM (1999) Human acute cerebral ischemia: Detection of changes in water diffusion anisotropy by using MR imaging. Radiology 212:785–792PubMedGoogle Scholar
  8. 8.
    Ciccarelli O, Werring DJ, Wheeler-Kingshott CA, Barker GJ, Parker GJ, Thompson AJ, Miller DH (2001) Investigation of MS normal-appearing brain by using diffusion tensor MRI with clinical correlations. Neurology 56:926–933PubMedGoogle Scholar
  9. 9.
    Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632PubMedGoogle Scholar
  10. 10.
    Filippi M, Iannuci G, Cercignani M, Rocca MA, Pratesi A, Comi G (2000) A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging. Arch Neurol 57:1017–1021PubMedCrossRefGoogle Scholar
  11. 11.
    Melhem RI, Mori S, Eichler FS,Raymond GV, Moser HW (2001) Diffusion tensor brain MR imaging in X-linked cerebral adrenoleukodystrophy. Neurology 56:544–547PubMedGoogle Scholar
  12. 12.
    Hanyu H, Sakurai H, Iwamoto T, Takasaki M, Shindo H, Abe K (1998) Diffusion-weighted MR imaging of the hippocampus and temporal white matter in Alzheimer’s disease. J Neurol Sci 156:195–200PubMedCrossRefGoogle Scholar
  13. 13.
    Ellis CM, Simmons A, Jones DK, Bland J, Dawson JM, Horsfield MA, Williams SC, Leigh PN (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058PubMedGoogle Scholar
  14. 14.
    Pomara N, Crandall DT, Choi SJ, Johnson G, Lim KO (2001) White matter abnormalities in HIV-1 infection: a diffuse tensor imaging study. Psychiatry Res 28:15–24Google Scholar
  15. 15.
    Filippi CG, Ulug AM, Ryan E, Ferrando SJ, Van Gorp W (2001) Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 22:277–283PubMedGoogle Scholar
  16. 16.
    Maier JF, Clark CA, Barker GJ, Miller DH, Ron MA (2000) Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J Neurol Neurosurg Psychiatry 68:242–244PubMedCrossRefGoogle Scholar
  17. 17.
    Dumas de la Roque A, Oppenheim C, Classoux F et al (2005) Diffusion tensor imaging of partial intractable epilepsy. Eur Radiol 15:279–285PubMedCrossRefGoogle Scholar
  18. 18.
    Price SJ, Pena A, Burnet NG et al (2004) Tisue signature characterisation of diffusion tensor abnormalities in cerebral gliomas. Eur Radiol 14:1909–1917PubMedCrossRefGoogle Scholar
  19. 19.
    Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906PubMedCrossRefGoogle Scholar
  20. 20.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648PubMedGoogle Scholar
  21. 21.
    Shimanoy JS, McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, Lori NF, Cull TS, Conturo TE (1999) Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 212:770–784Google Scholar
  22. 22.
    Schneider JF, Il’yasov KA, Boltshauser E, Hennig J, Martin E (2003) Diffusion tensor imaging in cases of adrenoleukodystrophy: preliminary experience as a marker for early demyelination? AJNR Am J Neuroradiol 24:819–824PubMedGoogle Scholar
  23. 23.
    Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BCP, Conturo TE (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66PubMedGoogle Scholar
  24. 24.
    Nusbaum AO, Tang CY, Buchsbaum MS, Wei TC, Atlas SW (2001) Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 22:136–142PubMedGoogle Scholar
  25. 25.
    Schmithorst VJ, Wilke M, Dardzinski BJ, Holland SK (2002) Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study. Radiology 222:212–218PubMedCrossRefGoogle Scholar
  26. 26.
    Schneider JFL, Il’yasov KA, Hennig J, Martin E (2004) Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 46:258–266PubMedCrossRefGoogle Scholar
  27. 27.
    Hunsche S, Moseley ME, Stoeter P, Hedehus M (2001) Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology 221:550–556PubMedCrossRefGoogle Scholar
  28. 28.
    Guilfoyle DN, Suckow RF, Baslow MH (2003) The apparent dependence of the diffusion coefficient of N-acetylaspartate upon magnetic field strength: evidence of an interaction with NMR methodology. NMR Biomed 16:468–474PubMedCrossRefGoogle Scholar
  29. 29.
    Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49:177–182PubMedCrossRefGoogle Scholar
  30. 30.
    Il’yasov KA, Barta G, Kreher BW, Bellemann ME, Hennig J (2005) Importance of exact b-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles. Appl Magn Reson 29107–122CrossRefGoogle Scholar
  31. 31.
    Il’Yasov KA, Hennig J (1998) Single-shot diffusion-weighted RARE sequence: application for temperature monitoring during hyperthermia session. J Magn Reson Imaging 8:1296–1305PubMedCrossRefGoogle Scholar
  32. 32.
    Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissue elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219PubMedCrossRefGoogle Scholar
  33. 33.
    Holz M, Heil SR, Sacco A (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem 2:4740–4742CrossRefGoogle Scholar
  34. 34.
    Melhem ER, Itoh R, Jones L, Barker PB (2000) Diffusion tensor MR imaging of the brain: Effect of diffusion weighting on trace and anisotropy measurements. AJNR Am J Neuroradiol 21:1813–1820PubMedGoogle Scholar
  35. 35.
    Delano MC, Cooper TG, Siebert JE, Potchen MJ, Kuppusamy K (2000) High-b-value diffusion-weighted MR imaging of adult brain: image contrast and apparent diffusion coefficient map features. AJNR Am J Neuroradiol 21:1830–1836PubMedGoogle Scholar
  36. 36.
    Yoshiura T, Wu O, Zaheer A, Reese RG, Sorensen AG (2001) Highly diffusion-sensitized MRI of the brain: dissociation of gray and white matter. Magn Reson Med 45:734–740PubMedCrossRefGoogle Scholar
  37. 37.
    Burdette JH, Durden DD, Elster AD, Yen YF (2001) High b-value diffusion-weighted MRI of normal brain. J Comput Assist Tomogr 25:515–519PubMedCrossRefGoogle Scholar
  38. 38.
    Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515–525PubMedCrossRefGoogle Scholar
  39. 39.
    Papadakis NG, Xing D, Huang L-H, Hall LD, Carpenter TA (1999) A comparative study of acquisition schemes of diffusion tensor imaging using MRI. J Magn Reson 132:67–82CrossRefGoogle Scholar
  40. 40.
    Skare S, Hedehus M, Moseley ME, Li T-Q (2000) Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 147:340–352PubMedCrossRefGoogle Scholar
  41. 41.
    Batchelor PG, Atkinson D, Hill DL, Calamante F, Connelly A (2003) Anisotropic noise propagation in diffusion tensor MRI sampling schemes. Magn Reson Med 49:1143–1151PubMedCrossRefGoogle Scholar
  42. 42.
    Conturo TE, McKinstry RC, Aronovitz JA, Neil JJ (1995) Diffusion MRI: precision, accuracy and flow effects. NMR Biomed 8:307–332PubMedCrossRefGoogle Scholar
  43. 43.
    Dietrich O, Heiland S, Sartor K (2001) Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med 45:448–453PubMedCrossRefGoogle Scholar
  44. 44.
    Crooks LE, Arakawa M, Hoenninger J, McCarten B, Watts J, Kaufman L (1984) Magnetic resonance imaging: effects of magnetic field strength. Radiology 151:127–133PubMedGoogle Scholar
  45. 45.
    Kuhl Ch, Textor J, Gieseke J et al (2005) Acute and subacute ischemic stroke at high-field strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology 234:509–516PubMedCrossRefGoogle Scholar
  46. 46.
    Gelman N, Gorell JM, Barker PB et al (1999) MR Imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210:759–767Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thierry A. G. M. Huisman
    • 1
  • Thomas Loenneker
    • 1
  • Gerd Barta
    • 2
    • 3
  • Matthias E. Bellemann
    • 3
  • Juergen Hennig
    • 2
  • Joachim E. Fischer
    • 4
  • Kamil A. Il’yasov
    • 1
    • 2
  1. 1.Department of Diagnostic ImagingUniversity Children’s Hospital ZurichZurichSwitzerland
  2. 2.Department of Diagnostic Radiology, Section of Medical PhysicsUniversity of FreiburgFreiburgGermany
  3. 3.Department of Medical EngineeringUniversity of Applied Sciences JenaJenaGermany
  4. 4.Growth and Development CenterUniversity Children’s Hospital ZurichZurichSwitzerland

Personalised recommendations