European Radiology

, Volume 16, Issue 2, pp 256–268 | Cite as

First performance evaluation of a dual-source CT (DSCT) system

  • Thomas G. Flohr
  • Cynthia H. McCollough
  • Herbert Bruder
  • Martin Petersilka
  • Klaus Gruber
  • Christoph Süβ
  • Michael Grasruck
  • Karl Stierstorfer
  • Bernhard Krauss
  • Rainer Raupach
  • Andrew N. Primak
  • Axel Küttner
  • Stefan Achenbach
  • Christoph Becker
  • Andreas Kopp
  • Bernd M. Ohnesorge
Computer Tomography

Abstract

We present a performance evaluation of a recently introduced dual-source computed tomography (DSCT) system equipped with two X-ray tubes and two corresponding detectors, mounted onto the rotating gantry with an angular offset of 90°. We introduce the system concept and derive its consequences and potential benefits for echocardiograph (ECG)-controlled cardiac CT and for general radiology applications. We evaluate both temporal and spatial resolution by means of phantom scans. We present first patient scans to illustrate the performance of DSCT for ECG-gated cardiac imaging, and we demonstrate first results using a dual-energy acquisition mode. Using ECG-gated single-segment reconstruction, the DSCT system provides 83 ms temporal resolution independent of the patient’s heart rate for coronary CT angiography (CTA) and evaluation of basic functional parameters. With dual-segment reconstruction, the mean temporal resolution is 60 ms (minimum temporal resolution 42 ms) for advanced functional evaluation. The z-flying focal spot technique implemented in the evaluated DSCT system allows 0.4 mm cylinders to be resolved at all heart rates. First clinical experience shows a considerably increased robustness for the imaging of patients with high heart rates. As a potential application of the dual-energy acquisition mode, the automatic separation of bones and iodine-filled vessels is demonstrated.

Keywords

Computed tomography Cardiac CT CT technology Dual-source CT Multidetector-row CT 

References

  1. 1.
    Ohnesorge B, Flohr T, Becker C, Kopp A, Schoepf U, Baum U, Knez A, Klingenbeck Regn K, Reiser M (2000) Cardiac imaging by means of electro- cardiographically gated multisection spiral CT-initial experience. Radiology 217:564–571PubMedGoogle Scholar
  2. 2.
    Kachelriess M, Ulzheimer S, Kalender W (2000) ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 27:1881–1902PubMedCrossRefGoogle Scholar
  3. 3.
    Taguchi K, Anno H (2000) High temporal resolution for multi-slice helical computed tomography. Med Phys 27(5):861–872PubMedCrossRefGoogle Scholar
  4. 4.
    Hong C, Becker CR, Huber A, Schoepf UJ, Ohnesorge B, Knez A, Brüning R, Reiser MF (2001) ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 220:712–717PubMedGoogle Scholar
  5. 5.
    Achenbach S, Ulzheimer S, Baum U et al (2000) Noninvasive coronary angiography by retrospectively ECG-gated multi-slice spiral CT. Circulation 102:2823–2828PubMedGoogle Scholar
  6. 6.
    Becker C, Knez A, Ohnesorge B, Schöpf U, Reiser M (2000) Imaging of non calcified coronary plaques using helical CT with retrospective EKG gating. AJR Am J Roentgenol175:423–424Google Scholar
  7. 7.
    Knez A, Becker C, Leber A, Ohnesorge B, Reiser M, Haberl R (2000) Non-invasive assessment of coronary artery stenoses with multidetector helical computed tomography. Circulation 101:e221–e222PubMedGoogle Scholar
  8. 8.
    Nieman K, Oudkerk M, Rensing B, van Oijen P, Munne A, van Geuns R, de Feyter P (2001) Coronary angiography with multi-slice computed tomography. Lancet 357:599–603PubMedCrossRefGoogle Scholar
  9. 9.
    Schroeder S, Kopp A, Baumbach A, Meisner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C, Claussen C, Karsch K (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multi-slice computed tomography. J Am Coll Cardiol 37(5):1430–1435PubMedCrossRefGoogle Scholar
  10. 10.
    Schroeder S, Flohr T, Kopp A F, Meisner C, Kuettner A, Herdeg C, Baumbach A, Ohnesorge B (2001) Accuracy of density measurements within plaques located in artificial coronary arteries by X-ray multislice CT: results of a phantom study. J Comput Assist Tomogr 25(6):900–906PubMedCrossRefGoogle Scholar
  11. 11.
    Kopp AF, Ohnesorge B, Becker C, Schröder S, Heuschmid M, Küttner A, Kuzo R, Claussen CD (2002) Reproducibility and accuracy of coronary calcium measurement with multidetector-row versus electron beam CT. Radiology 225:113–119PubMedGoogle Scholar
  12. 12.
    Becker CR, Kleffel T, Crispin A, Knez A, Young Y, Schöpf UJ, Haberl R, Reiser MF (2001) Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. AJR Am J Roentgenol 176:1295–1298Google Scholar
  13. 13.
    Juergens KU, Grude M, Fallenberg EM, Heindel W, Fischbach R (2002) Using ECG-gated multidetector CT to evaluate global left ventricular myocardial function in patients with coronary artery disease. AJR Am J Roentgenol 179:1545–1550Google Scholar
  14. 14.
    Kopp A, Schröder S, Küttner A et al (2001) Coronary arteries: retrospectively ECG-gated multidetector row CT angiography with selective optimization of the image reconstruction window. Radiology 221:683–688PubMedGoogle Scholar
  15. 15.
    Flohr T, Bruder H, Stierstorfer K, Simon J, Schaller S, Ohnesorge B (2002) New technical developments in multislice CT, part 2: sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:1022–1027PubMedCrossRefGoogle Scholar
  16. 16.
    Flohr T, Schoepf UJ, Kuettner A, Halliburton S, Bruder H, Suess C, Schmidt B, Hofmann L, Yucel E K, Schaller S, Ohnesorge B (2003) Advances in cardiac imaging with 16-section CT-systems. Acad Radiol 10:386–401PubMedCrossRefGoogle Scholar
  17. 17.
    Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PMT, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054PubMedCrossRefGoogle Scholar
  18. 18.
    Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666PubMedCrossRefGoogle Scholar
  19. 19.
    Kuettner A, Beck T, Drosch T, Kettering K, Heuschmid M, Burgstahler C, Claussen CD, Kopp AF, Schroeder S (2005) Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution. Heart 91(7):938–941PubMedCrossRefGoogle Scholar
  20. 20.
    Kuettner A, Beck T, Drosch T, Kettering K, Heuschmid M, Burgstahler C, Claussen CD, Kopp AF, Schroeder S (2005) Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol 45(1):123–127PubMedCrossRefGoogle Scholar
  21. 21.
    Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H (2004) Performance evaluation of a 64-slice CT-system with z-flying focal spot. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:1803–1810PubMedCrossRefGoogle Scholar
  22. 22.
    Leber A W, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, Wintersperger B, Reiser M, Becker CR, Steinbeck G, Boekstegers P (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography. J Am Coll Cardiol 46(1):147–154PubMedCrossRefGoogle Scholar
  23. 23.
    Raff G L, Gallagher M J, O’Neill W W, Goldstein J A (2005) Diagnostic accuracy of non-invasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46(3):552–557PubMedCrossRefGoogle Scholar
  24. 24.
    Mollet NR, Cademartiri F, van Mieghem CA, Runza G, McFadden EP, Baks T, Serruys PW, Krestin GP, de Feyter PJ (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112(15):2318–2323PubMedCrossRefGoogle Scholar
  25. 25.
    Wintersperger BJ, Nikolaou K, von Ziegler F et al (2005) Image quality and reconstruction timing of 64-slice coronary CT augiography with 0.33s/360° rotation speed (in press)Google Scholar
  26. 26.
    Halliburton SS, Stillman AE, Flohr T, Ohnesorge B, Obuchowski N, Lieber M, Karim W, Kuzmiak S, Kasper JM, White RD (2003) Do segmented reconstruction algorithms for cardiac multi-slice computed tomography improve image quality? Herz 28(1):20–31PubMedCrossRefGoogle Scholar
  27. 27.
    Budoff M, Georgiou D, Brody A et al (1996) Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation 93:898–904PubMedGoogle Scholar
  28. 28.
    Wielopolski P, van Geuns R, de Feyter P, Oudkerk M (1998) Coronary arteries. Eur Radiol 8:873–885PubMedCrossRefGoogle Scholar
  29. 29.
    Achenbach S, Moshage W, Ropers D, Bachmann K (1998) Curved multiplanar reconstructions for the evaluation of contrast-enhanced electron-beam CT of the coronary arteries. AJR Am J Roentgenol 170:895–899Google Scholar
  30. 30.
    Becker C, Knez A, Jakobs T et al (1999) Detection and quantification of coronary artery calcification with electron-beam and conventional CT. Eur Radiol 9:620–624PubMedCrossRefGoogle Scholar
  31. 31.
    McCollough CH, Zink FE (1994) The technical design and performance of ultrafast computed tomography. Radiol Clin North Am 32(3):521–536PubMedGoogle Scholar
  32. 32.
    McCollough CH, Zink FE, Morin R (1994) Radiation dosimetry for electron beam CT. Radiology 192(3):637–643PubMedGoogle Scholar
  33. 33.
    McCollough CH, Kanal KM, Lanutti N, Ryan KJ (1999) Experimental determination of section sensitivity profiles and image noise in electron beam computed tomography. Med Phys 26(2):287–295PubMedCrossRefGoogle Scholar
  34. 34.
    Robb R, Ritman E (1979) High speed synchronous volume computed tomography of the heart. Radiology 133:655–661PubMedGoogle Scholar
  35. 35.
    Ritman E, Kinsey J, Robb R, Gilbert B, Harris L, Wood E (1980) Three-dimensional imaging of heart, lungs, and circulation. Science 210:273–280PubMedGoogle Scholar
  36. 36.
    Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough C H (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32(8):2536–2547PubMedCrossRefGoogle Scholar
  37. 37.
    Schardt P, Deuringer J, Freudenberger J, Hell E, Knuepfer W, Mattern D, Schild M (2004) New X-ray tube performance in computed tomography by introducing the rotating envelope tube technology. Med Phys 31(9):2699–2706PubMedCrossRefGoogle Scholar
  38. 38.
    Parker D (1982) Optimal short scan convolution reconstruction for fanbeam CT. Med Phys 9(2):254–257PubMedCrossRefGoogle Scholar
  39. 39.
    Flohr T, Ohnesorge B (2001) Heart rate adaptive optimization of spatial and temporal resolution for ECG-gated multi-slice spiral CT of the heart. J Comput Assist Tomogr 25(6):907–923PubMedCrossRefGoogle Scholar
  40. 40.
    Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13(3):334–339PubMedCrossRefGoogle Scholar
  41. 41.
    Vetter JR, Perman WH, Kalender WA, Mazess RB, Holden JE (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys 13(3):340–343PubMedCrossRefGoogle Scholar
  42. 42.
    Achenbach S, Ropers D, Holle J, et al (2000) In-plane coronary arterial motion velocity: measurement with electron beam CT. Radiology 216:457–463PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Thomas G. Flohr
    • 1
    • 2
  • Cynthia H. McCollough
    • 3
  • Herbert Bruder
    • 1
  • Martin Petersilka
    • 1
  • Klaus Gruber
    • 1
  • Christoph Süβ
    • 1
  • Michael Grasruck
    • 1
  • Karl Stierstorfer
    • 1
  • Bernhard Krauss
    • 1
  • Rainer Raupach
    • 1
  • Andrew N. Primak
    • 3
  • Axel Küttner
    • 4
  • Stefan Achenbach
    • 5
  • Christoph Becker
    • 6
  • Andreas Kopp
    • 2
  • Bernd M. Ohnesorge
    • 1
  1. 1.Siemens Medical SolutionsComputed Tomography CTE PAForchheimGermany
  2. 2.Department of Diagnostic RadiologyEberhard-Karls-Universität TübingenTübingenGermany
  3. 3.Mayo Clinic College of MedicineDepartment of RadiologyRochesterUSA
  4. 4.Department of Diagnostic RadiologyFriedrich-Alexander-Universität ErlangenErlangenGermany
  5. 5.Department of CardiologyFriedrich-Alexander-Universität ErlangenErlangenGermany
  6. 6.Department of Diagnostic Radiology, Klinikum GroβhadernLudwigs-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations