Applications of phase-contrast flow and velocity imaging in cardiovascular MRI


A review of cardiovascular clinical and research applications of MRI phase-contrast velocity imaging, also known as velocity mapping or flow imaging. Phase-contrast basic principles, advantages, limitations, common pitfalls and artefacts are described. It can measure many different aspects of the complicated blood flow in the heart and vessels: volume flow (cardiac output, shunt, valve regurgitation), peak blood velocity (for stenosis), patterns and timings of velocity waveforms and flow distributions within heart chambers (abnormal ventricular function) and vessels (pulse-wave velocity, vessel wall disease). The review includes phase-contrast applications in cardiac function, heart valves, congenital heart diseases, major blood vessels, coronary arteries and myocardial wall velocity.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–c
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Varaprasathan GA, Araoz PA, Higgins CB, Reddy GP (2002) Quantification of flow dynamics in congenital heart disease: applications of velocity-encoded cine MR imaging. Radiographics 22:895–905

  2. 2.

    Tan RS, Mohiaddin RH (2001) Cardiovascular applications of magnetic resonance flow measurement. Rays 26:71–91 (Review)

  3. 3.

    Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671

  4. 4.

    Greil G, Geva T, Maier SE, Powell AJ (2002) Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. J Magn Reson Imaging 15:47–54

  5. 5.

    Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T (2003) Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol 15:1523–1525

  6. 6.

    Reimer P, Boos M (1999) Phase-contrast MR angiography of peripheral arteries: technique and clinical application. Eur Radiol 9:122–127

  7. 7.

    Markl M, Bammer R, Alley MT, Elkins CJ, Draney MT, Barnett A, Moseley ME, Glover GH, Pelc NJ (2003) Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med 50:791–801

  8. 8.

    Ding S, Wolff SD, Epstein FH (1998) Improved coverage in dynamic contrast-enhanced cardiac MRI using interleaved gradient-echo EPI. Magn Reson Med 39:514–519

  9. 9.

    Nayak KS, Hu BS, Nishimura DG (2003) Rapid quantitation of high-speed flow jets. Magn Reson Med 50:366–372

  10. 10.

    Beerbaum P, Korperich H, Gieseke J, Barth P, Peuster M, Meyer H (2003) Rapid left-to-right shunt quantification in children by phase-contrast magnetic resonance imaging combined with sensitivity encoding (SENSE). Circulation 108:1355–1361

  11. 11.

    Markl M, Schneider B, Hennig J (2002) Fast phase contrast cardiac magnetic resonance imaging: improved assessment and analysis of left ventricular wall motion. J Magn Reson Imaging 15:642–653

  12. 12.

    Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418

  13. 13.

    Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39:300–308

  14. 14.

    Tang C, Blatter DD, Parker DL (1993) Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging 3:377–385

  15. 15.

    Hamilton CA, Moran PR, Santago P II, Rajala SA (1994) Effects of intravoxel velocity distributions on the accuracy of the phase-mapping method in phase-contrast MR angiography. J Magn Reson Imaging 4:752–755

  16. 16.

    Chatzimavroudis GP, Zhang H, Halliburton SS, Moore JR, Simonetti OP, Schvartzman PR, Stillman AE, White RD (2003) Clinical blood flow quantification with segmented k-space magnetic resonance phase velocity mapping. J Magn Reson Imaging 17:65–71

  17. 17.

    Laffon E, Lecesne R, De Ledinghen V, Valli N, Couzigou P, Laurent F, Drouillard J, Ducassou D, Barat JL (1999) Segmented 5 versus nonsegmented flow quantitation: comparison of portal vein flow measurements. Invest Radiol 34:176–180

  18. 18.

    de Haan MW, Kouwenhoven M, Kessels AG, van Engelshoven JM (2000) Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging. Eur Radiol 10:1133–1137

  19. 19.

    Arheden H, Saeed M, Tornqvist E, Lund G, Wendland MF, Higgins CB, Stahlberg F (2001) Accuracy of segmented MR velocity mapping to measure small vessel pulsatile flow in a phantom simulating cardiac motion. J Magn Reson Imaging 13:722–728

  20. 20.

    van den Hout RJ, Lamb HJ, van den Aardweg JG, Schot R, Steendijk P, van der Wall EE, Bax JJ, de Roos A (2003) Real-time MR imaging of aortic flow: influence of breathing on left ventricular stroke volume in chronic obstructive pulmonary disease. Radiology 229:513–519

  21. 21.

    Sakuma H, Kawada N, Kubo H, Nishide Y, Takano K, Kato N, Takeda K (2001) Effect of breath holding on blood flow measurement using fast velocity encoded cine MRI. Magn Reson Med 45:346–348

  22. 22.

    Firmin DN, Nayler GL, Kilner PJ, Longmore DB (1990) The application of phase shifts in NMR for flow measurement. Magn Reson Med 14:230–241

  23. 23.

    Thunberg P, Wigstrom L, Wranne B, Engvall J, Karlsson M (2000) Correction for acceleration-induced displacement artifacts in phase contrast imaging. Magn Reson Med 43:734–738

  24. 24.

    Oshinski JN, Ku DN, Bohning DE, Pettigrew RI (1992) Effects of acceleration on the accuracy of MR phase velocity measurements. J Magn Reson Imaging 2:665–670

  25. 25.

    Buonocore MH (1993) Blood flow measurement using variable velocity encoding in the RR interval. Magn Reson Med 29:790–795

  26. 26.

    Wang ZJ, Reddy GP, Gotway MB, Yeh BM, Higgins CB (2003) Cardiovascular shunts: MR imaging evaluation. Radiographics 23 (Special):S181–S194

  27. 27.

    Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T (2003) Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol 91:1523–1525

  28. 28.

    Kramer U, Dornberger V, Fenchel M, Stauder N, Claussen CD, Miller S (2003) Scimitar syndrome: morphological diagnosis and assessment of hemodynamic significance by magnetic resonance imaging. Eur Radiol 13 (Suppl 4):L147–L150

  29. 29.

    Li W, Davlouros PA, Kilner PJ, Pennell DJ, Gibson D, Henein MY, Gatzoulis MA (2004) Doppler-echocardiographic assessment of pulmonary regurgitation in adults with repaired tetralogy of Fallot: comparison with cardiovascular magnetic resonance imaging. Am Heart J 147:165–172

  30. 30.

    Didier D, Ratib O, Lerch R, Friedli B (2000) Detection and quantification of valvular heart disease with dynamic cardiac MR imaging. Radiographics 20:1279–1301

  31. 31.

    Chatzimavroudis GP, Walker PG, Oshinski JN, Franch RH, Pettigrew RI, Yoganathan AP (1997) Slice location dependence of aortic regurgitation measurements with MR phase velocity mapping. Magn Reson Med 37:545–551

  32. 32.

    Reid SA, Walker PG, Fisher J, Nagy Z, Ridgway JP, Watterson KG, Sivananthan MU (2002) The quantification of pulmonary valve haemodynamics using MRI. Int J Card Imaging 18:217–225

  33. 33.

    Kozerke S, Schwitter J, Pedersen EM, Boesiger P (2001) Aortic and mitral regurgitation: quantification using moving slice velocity mapping. J Magn Reson Imaging 14:106–112

  34. 34.

    Oshinski JN, Parks WJ, Markou CP, Bergman HL, Larson BE, Ku DN, Mukundan S Jr, Pettigrew RI (1996) Improved measurement of pressure gradients in aortic coarctation by magnetic resonance imaging. J Am Coll Cardiol 28:1818–1826

  35. 35.

    Henk CB, Grampp S, Koller J, Schoder M, Frank H, Klaar U, Gomischek G, Mostbeck GH (2002) Elimination of errors caused by first-order aliasing in velocity encoded cine-MR measurements of postoperative jets after aortic coarctation: in vitro and in vivo validation. Eur Radiol 12:1523–1531

  36. 36.

    Kilner PJ, Firmin DN, Rees RS, Martinez J, Pennell DJ, Mohiaddin RH, Underwood SR, Longmore DB (1991) Valve and great vessel stenosis: assessment with MR jet velocity mapping. Radiology 178:229–235

  37. 37.

    Konen E, Merchant N, Provost Y, McLaughlin PR, Crossin J, Paul NS (2004) Coarctation of the aorta before and after correction: the role of cardiovascular MRI. Am J Roentgenol 182:1333–1339

  38. 38.

    Sondergaard L, Stahlberg F, Thomsen C (1999) Magnetic resonance imaging of valvular heart disease. J Magn Reson Imaging 10:627–638

  39. 39.

    Holmvang G, Palacios IF, Vlahakes GJ, Dinsmore RE, Miller SW, Liberthson RR, Block PC, Ballen B, Brady TJ, Kantor HL (1995) Imaging and sizing of atrial septal defects by magnetic resonance. Circulation 92:3473–3480

  40. 40.

    Keegan J, Gatehouse PD, John AS, Mohiaddin RH, Firmin DN (2003) Breath-hold signal-loss sequence for the qualitative assessment of flow disturbances in cardiovascular MR. J Magn Reson Imaging 18:496–501

  41. 41.

    Storey P, Li W, Chen Q, Edelman RR (2004) Flow artifacts in steady-state free precession cine imaging. Magn Reson Med 51:115–122

  42. 42.

    Strotzer M, Aebert H, Lenhart M, Nitz W, Wild T, Manke C, Volk M, Feuerbach S (2000) Morphology and hemodynamics in dissection of the descending aorta. Assessment with MR imaging. Acta Radiol 41:594–600

  43. 43.

    Kunz RP, Oberholzer K, Kuroczynski W, Horstick G, Krummenauer F, Thelen M, Kreitner KF (2004) Assessment of chronic aortic dissection: contribution of different ECG-gated breath-hold MRI techniques. Am J Roentgenol 182:1319–1326

  44. 44.

    Mousseaux E, Tasu JP, Jolivet O, Simonneau G, Bittoun J, Gaux JC (1999) Pulmonary arterial resistance: noninvasive measurement with indexes of pulmonary flow estimated at velocity-encoded MR imaging-preliminary experience. Radiology 212:896–902

  45. 45.

    Paelinck BP, Lamb HJ, Bax JJ, Van der Wall EE, de Roos A (2002) Assessment of diastolic function by cardiovascular magnetic resonance. Am Heart J 144:198–205

  46. 46.

    Schoenberg SO, Knopp MV, Bock M, Kallinowski F, Just A, Essig M, Hawighorst H, Schad L, van Kaick G (1997) Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology 203:45–53

  47. 47.

    Laffon E, Jimenez M, Latrabe V, Ducassou D, Choussat A, Marthan R, Laurent F (2004) Quantitative MRI comparison of systemic hemodynamics in Mustard/Senning repaired patients and healthy volunteers at rest. Eur Radiol 14:875–880

  48. 48.

    Laffon E, Galy-Lacour C, Laurent F, Ducassou D, Marthan R (2003) MRI quantification of the role of the reflected pressure wave on coronary and ascending aortic blood flow. Physiol Meas 24:681–692

  49. 49.

    Bogren HG, Buonocore MH, Valente RJ (2004) Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J Magn Reson Imaging 19:417–427

  50. 50.

    Kozerke S, Hasenkam JM, Pedersen EM, Boesiger P (2001) Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3D velocity mapping. J Magn Reson Imaging 13:690–698

  51. 51.

    Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature 404:759–761

  52. 52.

    Laffon E, Bernard V, Montaudon M, Marthan R, Barat JL, Laurent F (2001) Tuning of pulmonary arterial circulation evidenced by MR phase mapping in healthy volunteers. J Appl Physiol 90:469–474

  53. 53.

    Mohiaddin RH, Gatehouse D, Moon JC, Youssuffidin M, Yang GZ, Firmin DN, Pennell DJ (2002) Assessment of reactive hyperaemia using real time zonal echo-planar flow imaging. J Cardiovasc Magn Reson 4:283–287

  54. 54.

    Hjortdal VE, Emmertsen K, Stenbog E, Frund T, Schmidt MR, Kromann O, Sorensen K, Pedersen EM (2003) Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 108:1227–1231

  55. 55.

    Korperich H, Gieseke J, Barth P, Hoogeveen R, Esdorn H, Peterschroder A, Meyer H, Beerbaum P (2004) Flow volume and shunt quantification in pediatric congenital heart disease by real-time magnetic resonance velocity mapping: a validation study. Circulation 109:1987–1993

  56. 56.

    Klein C, Schalla S, Schnackenburg B, Bornstedt A, Fleck E, Nagel E (2001) Magnetic resonance flow measurements in real time: comparison with a standard gradient-echo technique. J Magn Reson Imaging 14:306–310

  57. 57.

    Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8:568–576

  58. 58.

    Shibata M, Sakuma H, Isaka N, Takeda K, Higgins CB, Nakano T (1999) Assessment of coronary flow reserve with fast cine phase contrast magnetic resonance imaging: comparison with measurement by Doppler guidewire. J Magn Reson Imaging 10:563–568

  59. 59.

    Nagel E, Bornstedt A, Hug J, Schnackenburg B, Wellnhofer E, Fleck E (1999) Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound. Magn Reson Med 41:544–549

  60. 60.

    Keegan J, Gatehouse PD, Mohiaddin RH, Yang GZ, Firmin DN (2004) Comparison of spiral and FLASH phase velocity mapping, with and without breath-holding, for the assessment of left and right coronary artery blood flow velocity. J Magn Reson Imaging 19:40–49

  61. 61.

    Langerak SE, Vliegen HW, Jukema JW, Kunz P, Zwinderman AH, Lamb HJ, van der Wall EE, de Roos A (2003) Value of magnetic resinance imagng for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 107:1502–1508

  62. 62.

    Langerak SE, Vliegen HW, Jukema JW, Zwinderman AH, Lamb HJ, de Roos A, van der Wall EE (2003) Vein graft function improvement after percutaneous intervention: evaluation with MR flow mapping. Radiology 228:834–841

  63. 63.

    Masaryk AM, Frayne R, Unal O, Krupinski E, Strother CM (1999) In vitro and in vivo comparison of three MR measurement methods for calculating vascular shear stress in the internal carotid artery. Am J Neuroradiol 20 237–245

  64. 64.

    Morgan VL, Graham TP Jr, Roselli RJ, Lorenz CH (1998) Alterations in pulmonary artery flow patterns and shear stress determined with three-dimensional phase-contrast magnetic resonance imaging in Fontan patients. J Thorac Cardiovasc Surg 116:294–304

  65. 65.

    Wu SP, Ringgaard S, Oyre S, Hansen MS, Rasmus S, Pedersen EM (2004) Wall shear rates differ between the normal carotid, femoral, and brachial arteries: an in vivo MRI study. J Magn Reson Imaging 19:188–193

  66. 66.

    Cheng CP, Herfkens RJ, Taylor CA (2003) Inferior vena caval hemodynamics quantified in vivo at rest and during cycling exercise using magnetic resonance imaging. Am J Physiol Heart Circ Physiol 284 H1161–H1167

  67. 67.

    Mohiaddin RH, Firmin DN, Longmore DB (1993) Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging. J Appl Physiol 74:492–497

  68. 68.

    Vulliemoz S, Stergiopulos N, Meuli R (2002) Estimation of local aortic elastic properties with MRI. Magn Reson Med 47:649–654

  69. 69.

    Rogers WJ, Hu YL, Coast D, Vido DA, Kramer CM, Pyeritz RE, Reichek N (2001) Age-associated changes in regional aortic pulse wave velocity. J Am Coll Cardiol 38:1123–1129

  70. 70.

    Nesbitt E, Schmidt-Trucksass A, Il’yasov KA, Weber H, Huonker M, Laubenberger J, Keul J, Hennig J, Langer M (2000) Assessment of arterial blood flow characteristics in normal and atherosclerotic vessels with the fast Fourier flow method. MAGMA 10:27–34

  71. 71.

    Drangova M, Zhu Y, Pelc N (1997) Effect of artifacts due to flowing blood on the reproducibility of phase-contrast measurements of myocardial motion. J Magn Reson Imaging 7:664–668

  72. 72.

    Wedeen V (1992) Magnetic Resonance Imaging of myocardial kinematics, technique to detect, localize, and quantify the strain rates of the active human myocardium. Mag Res Med 27:52–67

  73. 73.

    Masood S, Gao J, Yang G (2002) Virtual tagging: numerical considerations and phantom validation. IEEE Trans Med Imag 21:1123–1131

Download references

Author information

Correspondence to Peter D. Gatehouse.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gatehouse, P.D., Keegan, J., Crowe, L.A. et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol 15, 2172–2184 (2005).

Download citation


  • MRI
  • Cardiovascular
  • Blood flow
  • Phase contrast
  • Velocity mapping