Advertisement

European Radiology

, Volume 15, Issue 11, pp 2268–2275 | Cite as

Magnetic resonance characterization of tumor microvessels in experimental breast tumors using a slow clearance blood pool contrast agent (carboxymethyldextran-A2-Gd-DOTA) with histopathological correlation

  • Anda Preda
  • Viktor Novikov
  • Martina Möglich
  • Eugenia Floyd
  • Karl Turetschek
  • David M. Shames
  • Timothy P. L. Roberts
  • Claire Corot
  • Wayne O. Carter
  • Robert C. BraschEmail author
Experimental

Abstract

Carboxymethyldextran (CMD)-A2-Gd-DOTA, a slow clearance blood pool contrast agent with a molecular weight of 52.1 kDa, designed to have intravascular residence for more than 1 h, was evaluated for its potential to characterize and differentiate the microvessels of malignant and benign breast tumors. Precontrast single-slice inversion-recovery snapshot FLASH and dynamic contrast-enhanced MRI using an axial T1-weighted three-dimensional spoiled gradient recalled sequence was performed in 30 Sprague-Dawley rats with chemically induced breast tumors. Endothelial transfer coefficient and fractional plasma volume of the breast tumors were estimated from MRI data acquired with CMD-A2-Gd-DOTA enhancement injected at a dose of 0.1 mmol Gd/kg body weight using a two-compartment bidirectional model of the tumor tissue. The correlation between MRI microvessel characteristics and histopathological tumor grade was determined using the Scarff-Bloom-Richardson method. Using CMD-A2-Gd-DOTA, no significant correlations were found between the MR-estimated endothelial transfer coefficient or plasma volumes with histological tumor grade. Analysis of CMD-A2-Gd-DOTA-enhanced MR kinetic data failed to demonstrate feasibility for the differentiation of benign from malignant tumors or for image-based tumor grading.

Keywords

Magnetic resonance imaging Contrast media Carboxymethyldextran-A2-Gd-DOTA Breast neoplasms Dynamic contrast enhancement 

Notes

Acknowledgements

This research was supported by funds received from the National Cancer Institute, grant CA82923 and from the Cancer Research Fund, State of California, under interagency agreement 97-12013 (University of California contract 98-00924V). A.P. was supported in part by the Drie Lichten and the Johan Vermeij Foundations, The Netherlands.

References

  1. 1.
    Turetschek K, Preda A, Floyd E, Shames DM, Novikov V, Roberts TPL, Wood JM, Fu Y, Carter WO, Brasch RC (2003) MRI monitoring of tumor response following angiogenesis inhibition in an experimental human breast cancer model. Eur J Nucl Med 30:448–455Google Scholar
  2. 2.
    Pham CD, Roberts TPL, van Bruggen N, Melnyk O, Mann J, Ferrara N, Cohen RL, Brasch RC (1998) Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest 6:225–230Google Scholar
  3. 3.
    Daldrup H, Shames DM, Wendland M, Okuhata Y, Link TM, Rosenau W, Lu Y, Brasch RC (1998) Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Am J Roentgenol 171:941–949Google Scholar
  4. 4.
    Brasch RC, Shames DM, Cohen FM, Kuwatsuru R, Neuder M, Mann JS, Vexler V, Muhler A, Rosenau W (1994) Quantification of capillary permeability to macromolecular magnetic resonance imaging contrast media in experimental mammary adenocarcinomas. Invest Radiol 29 [Suppl 2]:S8–S11PubMedGoogle Scholar
  5. 5.
    Su MY, Wang Z, Carpenter PM, Lao X, Muhler A, Nalcioglu O (1999) Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumor in rats by using three MR contrast agents. J Magn Reson Imaging 9:177–186PubMedGoogle Scholar
  6. 6.
    Schwickert HC, Stiskal M, Roberts TP, van Dijke CF, Mann J, Muhler A, Shames DM, Demsar F, Disston A, Brasch RC (1996) Contrast-enhanced MR imaging assessment of tumor capillary permeability: effect of irradiation on delivery of chemotherapy. Radiology 198:893–898PubMedGoogle Scholar
  7. 7.
    Gossmann A, Okuhata Y, Shames DM, Helbich TH, Roberts TPL, Wendland MF, Huber S, Brasch RC (1999) Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media-preliminary experience. Radiology 213:265–272PubMedGoogle Scholar
  8. 8.
    Jain R (1994) Barriers to drug delivery in solid tumors. Sci Am 271:58–65Google Scholar
  9. 9.
    White D, Wang S-C, Aicher K, Dupon J, Engelstad B, Brasch R (1989) Albumin-(Gd-DTPA)15–20: whole body clearance, and organ distribution of gadolinium. In: Proceedings of the Society of Magnetic Resonance in Medicine, 8th Annual Meeting, Amsterdam, p 807Google Scholar
  10. 10.
    Baxter AB, Melnikoff S, Stites DP, Brasch RC (1991) Immunogenicity of gadolinium-based contrast agents for MRI. Invest Radiol 26:1035–1040PubMedGoogle Scholar
  11. 11.
    Turetschek K, Floyd E, Shames DM, Roberts TPL, Preda A, Novikov V, Corot C, Carter WO, Brasch RC (2001) Assessment of a rapid clearance blood pool MR contrast medium (P792) for assays of microvascular characteristics in experimental breast tumors with correlation to histopathology. Magn Reson Med 45:880–886PubMedGoogle Scholar
  12. 12.
    Turetschek K, Floyd E, Helbich T, Roberts TPL, Shames DM, Wendland MF, Carter WO, Brasch RC (2001) MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlation to histopathology. J Magn Reson Imaging 14:237–242PubMedGoogle Scholar
  13. 13.
    Turetschek K, Huber S, Floyd E, Helbich T, Roberts TPL, Shames DM, Tarlo KS, Wendland MF, Brasch RC (2001) MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 218:562–569PubMedGoogle Scholar
  14. 14.
    Turetschek K, Roberts TPL, Floyd E, Preda A, Novikov V, Shames DM, Carter WO, Brasch RC (2001) Tumor microvascular characterization using ultrasmall superparamagnetic iron oxide particles (USPIO) in an experimental breast cancer model. J Magn Reson Imaging 13:882–888PubMedGoogle Scholar
  15. 15.
    Corot C, Schaffer M, Beaute S, Bourrinet P, Zehaf S, Benize V, Sabatou M, Meyer D (1997) Physical, chemical and biological evaluations of CMD-A2-Gd-DOTA. A new paramagnetic dextran polymer. Acta Radiol 412 [Suppl]:91–99Google Scholar
  16. 16.
    Canet EP, Casali C, Desenfant A, An MY, Corot C, Obadia JF, Revel D, Janier MF (2000) Kinetic characterization of CMD-A2-Gd-DOTA as an intravascular contrast agent for myocardial perfusion measurements with MRI. Magn Reson Med 43:403–409PubMedGoogle Scholar
  17. 17.
    Mandybur T (1985) Neural, pituitary and mammary tumors in Sprague Dawley rats treated with x-irradiation to the head and N-ethyl-N-nitrosourea (ENU) during the early postnatal period: a statistical study of tumor incidence and survival. Radiat Res 101:406–472Google Scholar
  18. 18.
    Stoica G, Koestner A, Capen C (1984) Neoplasms induced with high single doses of N-ethyl-N-nitrosourea in 30 day-old Sprague Dawley rats, with special emphasis on mammary neoplasia. Anticancer Res 4:5–12PubMedGoogle Scholar
  19. 19.
    Stoica G, Jacobs R, Koestner A, O’Leary M, Welsch C (1991) ENU-induced in vitro neoplastic transformation of rat mammary epithelial cells. Anticancer Res 11:1783–1792PubMedGoogle Scholar
  20. 20.
    Haase A (1990) Snapshot FLASH MRI Applications to T1, T2, and chemical shift imaging. Magn Reson Med 13:77–89PubMedGoogle Scholar
  21. 21.
    Schwickert HC, Roberts TP, Shames DM, van Dijke CF, Disston A, Muhler A, Mann JS, Brasch RC (1995) Quantification of liver blood volume: comparison of ultra short TI inversion recovery echo planar imaging (ULSTIR-EPI), with dynamic 3D-gradient recalled echo imaging. Magn Reson Med 34:845–852PubMedGoogle Scholar
  22. 22.
    Jain R (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593PubMedGoogle Scholar
  23. 23.
    Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48(24 pt 1):7022–7032PubMedGoogle Scholar
  24. 24.
    Wedeking P, Sotak CH, Telser J, Kumar K, Chang CA, Tweedle MF (1992) Quantitative dependence of MR signal intensity on tissue concentration of Gd (HP-DO3A) in the nephrectomized rat. Magn Reson Imaging 10:97–108PubMedGoogle Scholar
  25. 25.
    Shames DM, Kuwatsuru R, Vexler V, Muhler A, Brasch RC (1993) Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: a quantitative non-invasive technique. Magn Reson Med 29:616–622PubMedGoogle Scholar
  26. 26.
    Scarff R, Torloni H (1968) Histological typing of breast tumors. World Health Organization, Geneva, Switzerland, pp 13–20Google Scholar
  27. 27.
    Bloom H, Richardson W (1957) Histologic grading and prognosis in breast cancer. Br J Cancer 11:359–377PubMedGoogle Scholar
  28. 28.
    Gossmann A, Helbich TH, Mesiano S, Shames DM, Wendland MF, Roberts TP, Ferrara N, Jaffe RB, Brasch RC (2000) Magnetic resonance imaging in an experimental model of human ovarian cancer demonstrating altered microvascular permeability after inhibition of vascular endothelial growth factor. Am J Obstet Gynecol 183:956–963PubMedGoogle Scholar
  29. 29.
    van Dijke CF, Brasch RC, Roberts TP, Weidner N, Mathur A, Shames DM, Mann JS, Demsar F, Lang P, Schwickert HC (1996) Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. Radiology 198:813–818PubMedGoogle Scholar
  30. 30.
    Tofts PS, Kernmode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367PubMedGoogle Scholar
  31. 31.
    Larsson HBW, Stubgaard M, Frederiksen JL, Jenssen M, Henriksen O, Paulson OB (1990) Quantitation of blood-brain-barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131PubMedGoogle Scholar
  32. 32.
    Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628PubMedGoogle Scholar
  33. 33.
    Daldrup-Link HE, Brasch RC (2003) Macromolecular contrast agents for MR mammography: current status. Eur Radiol 13:354–365PubMedGoogle Scholar
  34. 34.
    Roberts TP (1997) Physiologic measurements by contrast-enhanced MR imaging: expectations and limitations. J Magn Reson Imaging 7:82–90PubMedGoogle Scholar
  35. 35.
    Kroft LJ, Doornbos J, van der Geest RJ, de Roos A (1999) Blood pool contrast agent CMD-A2-Gd-DOTA-enhanced MR imaging of infarcted myocardium in pigs. J Magn Reson Imaging 10:170–177PubMedGoogle Scholar
  36. 36.
    Kroft LJ, Doornbos J, Benderbous S, de Roos A (1999) Equilibrium phase MR angiography of the aortic arch and abdominal vasculature with the blood pool contrast agent CMD-A2-Gd-DOTA in pigs. J Magn Reson Imaging 9:777–785PubMedGoogle Scholar
  37. 37.
    Loubeyre P, Canet E, Zhao S, Benderbous S, Amiel M, Revel D (1996) Carboxymethyl-Dextran-Gadolinium-DTPA as a blood pool contrast agent for magnetic resonance angiography. Invest Radiol 31:288–293PubMedGoogle Scholar
  38. 38.
    Corot C, Violas X, Robert P, Port M (2000) Pharmacokinetics of three gadolinium chelates with different molecular sizes shortly after intravenous injection in rabbits. Relevance to MR angiography. Invest Radiol 4:213–218CrossRefGoogle Scholar
  39. 39.
    Daldrup-Link HE, Link TM, Moller HE, Wiedermann D, Bonnemain B, Corot C, Rummeny EJ (2001) Carboxymethyldextran-A2-Gd-DOTA enhancement patterns in the abdomen and pelvis in an animal model. Eur Radiol 11:1276–1284PubMedGoogle Scholar
  40. 40.
    Rank F, Dombernowsky P, Bang Jespersen N, Pederson B, Keiding N (1987) Histologic malignancy grading of invasive ductal breast carcinoma; a regression analysis of prognostic factors in low risk carcinomas from a multicentric trial. Cancer 60:1299–1305PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Anda Preda
    • 1
    • 2
  • Viktor Novikov
    • 1
  • Martina Möglich
    • 1
  • Eugenia Floyd
    • 3
  • Karl Turetschek
    • 1
  • David M. Shames
    • 1
  • Timothy P. L. Roberts
    • 1
  • Claire Corot
    • 4
  • Wayne O. Carter
    • 3
  • Robert C. Brasch
    • 1
    Email author
  1. 1.Department of Radiology, Center for Pharmaceutical and Molecular ImagingUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Department of RadiologyErasmus University Medical CenterRotterdamThe Netherlands
  3. 3.Pfizer Central ResearchGrotonUSA
  4. 4.Guerbet LaboratoriesAulnay sous BoisFrance

Personalised recommendations