European Radiology

, Volume 15, Issue 7, pp 1329–1343 | Cite as

Imaging the vertebral artery

  • Keng Yeow Tay
  • Jean Marie U-King-Im
  • Rikin A. Trivedi
  • Nicholas J. Higgins
  • Justin J. Cross
  • John R. Davies
  • Peter L. Weissberg
  • Nagui M. Antoun
  • Jonathan H. GillardEmail author


Although conventional intraarterial digital subtraction angiography remains the gold standard method for imaging the vertebral artery, noninvasive modalities such as ultrasound, multislice computed tomographic angiography and magnetic resonance angiography are constantly improving and are playing an increasingly important role in diagnosing vertebral artery pathology in clinical practice. This paper reviews the current state of vertebral artery imaging from an evidence-based perspective. Normal anatomy, normal variants and a number of pathological entities such as vertebral atherosclerosis, arterial dissection, arteriovenous fistula, subclavian steal syndrome and vertebrobasilar dolichoectasia are discussed.


Vertebral artery Angiography Magnetic angiography Computed tomographic angiography Ultrasound 



We are grateful to Philip Elliot and Rosemary Farmer from Addenbrooke’s Hospital for providing some of the images in this review. We also thank the British Heart Foundation for supporting the FDG-PET studies.


  1. 1.
    Moniz E (1927) L’encephalographie arterielle, son importance dans la localisation des tumeurs cerebrales. Rev Neurol 2:72–90Google Scholar
  2. 2.
    Shrontz C, Dujovny M, Ausman JI, Diaz FG, Pearce JE, Berman SK, Hirsch E, Mirchandani HG (1986) Surgical anatomy of the arteries of the posterior fossa. J Neurosurg 65:540–544Google Scholar
  3. 3.
    Vorster W, du Plooy PT, Meiring JH (1998) Abnormal origin of internal thoracic and vertebral arteries. Clin Anat 11:33–37Google Scholar
  4. 4.
    Nizanowski C, Noczynski L, Suder E (1982) Variability of the origin of ramifications of the subclavian artery in humans (studies on the Polish population). Folia Morphol (Warsz) 41:281–294Google Scholar
  5. 5.
    Daseler EH, Anson BJ (1959) Surgical anatomy of the subclavian artery and its branches. Surg Gynecol Obstet 108:149–174Google Scholar
  6. 6.
    Bergman RA, Thompson SA, Afifi AK Saadeh FA (1988) Compendium of anatomic variation. Urban and Schwarzenberg, MunichGoogle Scholar
  7. 7.
    Takasato Y, Hayashi H, Kobayashi T, Hashimoto Y (1992) Duplicated origin of right vertebral artery with rudimentary and accessory left vertebral arteries. Neuroradiology 34:287–289CrossRefGoogle Scholar
  8. 8.
    Rieger P, Huber G (1983) Fenestration and duplicate origin of the left vertebral artery in angiography. Report of three cases. Neuroradiology 25:45–50CrossRefGoogle Scholar
  9. 9.
    Palmer FJ (1977) Origin of the right vertebral artery from the right common carotid artery: angiographic demonstration of three cases. Br J Radiol 50:185–187Google Scholar
  10. 10.
    Matula C, Trattnig S, Tschabitscher M, Day JD, Koos WT (1997) The course of the prevertebral segment of the vertebral artery: anatomy and clinical significance. Surg Neurol 48:125–131CrossRefGoogle Scholar
  11. 11.
    Davis WLJJ (1994) Cerebral vasculature: normal anatomy and pathology. In: Osborn AG (ed) Diagnostic neuroradiology. Mosby, St Louis, pp 117–153Google Scholar
  12. 12.
    Wollschlaeger G, Wollschlaeger PB, Lucas FV, Lopez VF (1967) Experience and result with postmortem cerebral angiography performed as routine procedure of the autopsy. Am J Roentgenol Radium Ther Nucl Med 101:68–87Google Scholar
  13. 13.
    Manabe H, Oda N, Ishii M, Ishii A (1991) The posterior inferior cerebellar artery originating from the internal carotid artery, associated with multiple aneurysms. Neuroradiology 33:513–515CrossRefGoogle Scholar
  14. 14.
    Salas E, Ziyal IM, Bank WO, Santi MR, Sekhar LN (1998) Extradural origin of the posteroinferior cerebellar artery: an anatomic study with histological and radiographic correlation. Neurosurgery 42:1326–1331CrossRefGoogle Scholar
  15. 15.
    Jellici E, Beltramello A, Vasori S, Procacci C (2003) Kinking of the vertebral artery (2003:3b). Eur Radiol 13:1469–1471Google Scholar
  16. 16.
    Anderson RE, Shealy CN (1970) Cervical pedicle erosion and rootlet compression caused by a tortuous vertebral artery. Radiology 96:537–538Google Scholar
  17. 17.
    Glover JR, Kennedy C, Coral A (1990) Tortuous vertebral artery—onset of symptoms during pregnancy. Clin Radiol 41:66–68Google Scholar
  18. 18.
    Mizukami M, Tomita T, Mine T, Mihara H (1972) Bypass anomaly of the vertebral artery associated with cerebral aneurysm and arteriovenous malformation. J Neurosurg 37:204–209Google Scholar
  19. 19.
    Hasegawa T, Ito H, Hwang WZ, Yamamoto S (1986) Single extracranial–intracranial duplication of the vertebral artery. Surg Neurol 25:369–372CrossRefGoogle Scholar
  20. 20.
    Padget D (1948) The development of the cranial arteries in the human embryo. Contrib Embryol 32:205–261Google Scholar
  21. 21.
    Kowada M, Yamaguchi K, Takahashi H (1972) Fenestration of the vertebral artery with a review of 23 cases in Japan. Radiology 103:343–346Google Scholar
  22. 22.
    Sanders WP, Sorek PA, Mehta BA (1993) Fenestration of intracranial arteries with special attention to associated aneurysms and other anomalies. Am J Neuroradiol 14:675–680Google Scholar
  23. 23.
    San-Galli F, Leman C, Kien P, Khazaal J, Phillips SD, Guerin J (1992) Cerebral arterial fenestrations associated with intracranial saccular aneurysms. Neurosurgery 30:279–283Google Scholar
  24. 24.
    Campos J, Fox AJ, Vinuela F, Lylyk P, Ferguson GG, Drake CG, Peerless SJ (1987) Saccular aneurysms in basilar artery fenestration. Am J Neuroradiol 8:233–236Google Scholar
  25. 25.
    Miyazaki S, Kamata K, Yamaura A (1981) Multiple aneurysms of the vertebrobasilar system associated with fenestration of the vertebral artery. Surg Neurol 15:192–195CrossRefGoogle Scholar
  26. 26.
    Uchino A, Kato A, Abe M, Kudo S (2001) Association of cerebral arteriovenous malformation with cerebral arterial fenestration. Eur Radiol 11:493–496CrossRefGoogle Scholar
  27. 27.
    Resta M, Gentile MA, Di Cuonzo F, Vinjau E, Brindicci D, Carella A (1984) Clinical–angiographic correlations in 132 patients with megadolichovertebrobasilar anomaly. Neuroradiology 26:213–216CrossRefGoogle Scholar
  28. 28.
    Nijensohn DE, Saez RJ, Reagan TJ (1974) Clinical significance of basilar artery aneurysms. Neurology 24:301–305Google Scholar
  29. 29.
    Jannetta PJ, Segal R, Wolfson SK Jr (1985) Neurogenic hypertension: etiology and surgical treatment. I. Observations in 53 patients. Ann Surg 201:391–398Google Scholar
  30. 30.
    Gardner WJ (1962) Concerning the mechanism of trigeminal neuralgia and hemifacial spasm. J Neurosurg 19:947–958PubMedGoogle Scholar
  31. 31.
    Barker FG II, Jannetta PJ, Bissonette DJ, Shields PT, Larkins MV, Jho HD (1995) Microvascular decompression for hemifacial spasm. J Neurosurg 82:201–210Google Scholar
  32. 32.
    Korogi Y, Nagahiro S, Du C, Sakamoto Y, Takada A, Ushio Y, Ikushima I, Takahashi M (1995) Evaluation of vascular compression in trigeminal neuralgia by 3D time-of-flight MRA. J Comput Assist Tomogr 19:879–884Google Scholar
  33. 33.
    Arbab AS, Nishiyama Y, Aoki S, Yoshikawa T, Kumagai H, Araki T, Nagaseki Y, Nukui H (2000) Simultaneous display of MRA and MPR in detecting vascular compression for trigeminal neuralgia or hemifacial spasm: comparison with oblique sagittal views of MRI. Eur Radiol 10:1056–1060CrossRefGoogle Scholar
  34. 34.
    Girard N, Poncet M, Caces F, Tallon Y, Chays A, Martin-Bouyer P, Magnan J, Raybaud C (1997) Three-dimensional MRI of hemifacial spasm with surgical correlation. Neuroradiology 39:46–51CrossRefGoogle Scholar
  35. 35.
    Akimoto H, Nagaoka T, Nariai T, Takada Y, Ohno K, Yoshino N (2002) Preoperative evaluation of neurovascular compression in patients with trigeminal neuralgia by use of three-dimensional reconstruction from two types of high-resolution magnetic resonance imaging. Neurosurgery 51:956–961; discussion 961–962CrossRefPubMedGoogle Scholar
  36. 36.
    Hastreiter P, Naraghi R, Tomandl B, Bonk A, Fahlbusch R (2003) Analysis and 3-dimensional visualization of neurovascular compression syndromes. Acad Radiol 10:1369–1379PubMedGoogle Scholar
  37. 37.
    Boecher-Schwarz HG, Bruehl K, Kessel G, Guenthner M, Perneczky A, Stoeter P (1998) Sensitivity and specificity of MRA in the diagnosis of neurovascular compression in patients with trigeminal neuralgia. A correlation of MRA and surgical findings. Neuroradiology 40:88–95CrossRefPubMedGoogle Scholar
  38. 38.
    Dahnert W (2003) Radiology review manual. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  39. 39.
    Aygun TMN (2002) MR Angiography: techniques and clinical applications. In: Atlas S (ed) Magnetic resonance imaging of the brain and spine. Lippincott Williams & Wilkins, Philadelphia, pp 981–1057Google Scholar
  40. 40.
    Houser OW, Mokri B, Sundt TM Jr, Baker HL Jr, Reese DF (1984) Spontaneous cervical cephalic arterial dissection and its residuum: angiographic spectrum. Am J Neuroradiol 5:27–34Google Scholar
  41. 41.
    Hart RG, Easton JD (1983) Dissections of cervical and cerebral arteries. Neurol Clin 1:155–182Google Scholar
  42. 42.
    Schievink WI, Mokri B, Piepgras DG, Kuiper JD (1996) Recurrent spontaneous arterial dissections: risk in familial versus nonfamilial disease. Stroke 27:622–624Google Scholar
  43. 43.
    Friedman DP, Flanders AE (1992) Unusual dissection of the proximal vertebral artery: description of three cases. Am J Neuroradiol 13:283–286Google Scholar
  44. 44.
    de Bray JM, Penisson-Besnier I, Dubas F, Emile J (1997) Extracranial and intracranial vertebrobasilar dissections: diagnosis and prognosis. J Neurol Neurosurg Psychiatry 63:46–51Google Scholar
  45. 45.
    Cronqvist SE, Norrving B, Nilsson B (1986) Young stroke patients. An angiographic study. Acta Radiol Suppl 369:34–37Google Scholar
  46. 46.
    Bogousslavsky J, Regli F (1987) Ischemic stroke in adults younger than 30 years of age. Cause and prognosis. Arch Neurol 44:479–482Google Scholar
  47. 47.
    Chung YS, Han DH (2002) Vertebrobasilar dissection: a possible role of whiplash injury in its pathogenesis. Neurol Res 24:129–138CrossRefGoogle Scholar
  48. 48.
    Nagahiro S, Hamada J, Sakamoto Y, Ushio Y (1997) Follow-up evaluation of dissecting aneurysms of the vertebrobasilar circulation by using gadolinium-enhanced magnetic resonance imaging. J Neurosurg 87:385–390Google Scholar
  49. 49.
    Shin JH, Suh DC, Choi CG, Leei HK (2000) Vertebral artery dissection: spectrum of imaging findings with emphasis on angiography and correlation with clinical presentation. Radiographics 20:1687–1696Google Scholar
  50. 50.
    Crum B, Mokri B, Fulgham J (2000) Spinal manifestations of vertebral artery dissection. Neurology 55:304–306Google Scholar
  51. 51.
    Caplan LR, Baquis GD, Pessin MS, D’Alton J, Adelman LS, DeWitt LD, Ho K, Izukawa D, Kwan ES (1988) Dissection of the intracranial vertebral artery. Neurology 38:868–877Google Scholar
  52. 52.
    Provenzale JM, Morgenlander JC, Gress D (1996) Spontaneous vertebral dissection: clinical, conventional angiographic, CT, and MR findings. J Comput Assist Tomogr 20:185–193CrossRefGoogle Scholar
  53. 53.
    Anson J, Crowell RM (1991) Cervicocranial arterial dissection. Neurosurgery 29:89–96CrossRefGoogle Scholar
  54. 54.
    Miaux Y, Cognard C, Martin-Duverneuil N, Weill A, Savin D, Chiras J (1996) Flow-related enhancement in the vertebral plexus mimicking an intramural hematoma. Am J Neuroradiol 17:191–192Google Scholar
  55. 55.
    Zuber M, Meary E, Meder JF, Mas JL (1994) Magnetic resonance imaging and dynamic CT scan in cervical artery dissections. Stroke 25:576–581Google Scholar
  56. 56.
    Levy C, Laissy JP, Raveau V, Amarenco P, Servois V, Bousser MG, Tubiana JM (1994) Carotid and vertebral artery dissections: three-dimensional time-of-flight MR angiography and MR imaging versus conventional angiography. Radiology 190:97–103Google Scholar
  57. 57.
    Siebert JE, Pernicone JR, Potchen EJ (1992) Physical principles and application of magnetic resonance angiography. Semin Ultrasound CT MR 13:227–245Google Scholar
  58. 58.
    Wagle WA, Dumoulin CL, Souza SP, Cline HE (1989) 3DFT MR angiography of carotid and basilar arteries. Am J Neuroradiol 10:911–919Google Scholar
  59. 59.
    Leclerc X, Lucas C, Godefroy O, Nicol L, Moretti A, Leys D, Pruvo JP (1999) Preliminary experience using contrast-enhanced MR angiography to assess vertebral artery structure for the follow-up of suspected dissection. Am J Neuroradiol 20:1482–1490Google Scholar
  60. 60.
    Okumura A, Araki Y, Nishimura Y, Iwama T, Kaku Y, Furuichi M, Sakai N (2001) The clinical utility of contrast-enhanced 3D MR angiography for cerebrovascular disease. Neurol Res 23:767–771CrossRefGoogle Scholar
  61. 61.
    Soper JR, Parker GD, Hallinan JM (1995) Vertebral artery dissection diagnosed with CT. Am J Neuroradiol 16:952–954Google Scholar
  62. 62.
    Kurokawa Y, Yonemasu Y, Kano H, Sasaki T, Inaba K (2000) The usefulness of 3D-CT angiography for the diagnosis of spontaneous vertebral artery dissection—report of two cases. Comput Med Imaging Graph 24:115–119CrossRefGoogle Scholar
  63. 63.
    Rogers FB, Baker EF, Osler TM, Shackford SR, Wald SL, Vieco P (1999) Computed tomographic angiography as a screening modality for blunt cervical arterial injuries: preliminary results. J Trauma 46:380–385Google Scholar
  64. 64.
    Leclerc X, Godefroy O, Salhi A, Lucas C, Leys D, Pruvo JP (1996) Helical CT for the diagnosis of extracranial internal carotid artery dissection. Stroke 27:461–466PubMedGoogle Scholar
  65. 65.
    Leclerc X, Lucas C, Godefroy O, Tessa H, Martinat P, Leys D, Pruvo JP (1998) Helical CT for the follow-up of cervical internal carotid artery dissections. Am J Neuroradiol 19:831–837Google Scholar
  66. 66.
    Chen CJ, Tseng YC, Lee TH, Hsu HL, See LC (2004) Multisection CT angiography compared with catheter angiography in diagnosing vertebral artery dissection. Am J Neuroradiol 25:769–774Google Scholar
  67. 67.
    Lu CJ, Sun Y, Jeng JS, Huang KM, Hwang BS, Lin WH, Chen RC, Yip PK (2000) Imaging in the diagnosis and follow-up evaluation of vertebral artery dissection. J Ultrasound Med 19:263–270PubMedGoogle Scholar
  68. 68.
    Clevert DA, Rupp N, Reiser M, Jung EM (2004) Improved diagnosis of vascular dissection by ultrasound B-flow: a comparison with color-coded Doppler and power Doppler sonography. Eur Radiol. DOI  10.1007/s00330-004-2481-3
  69. 69.
    Vinchon M, Laurian C, George B, D’Arrigo G, Reizine D, Aymard A, Riche MC, Merland JJ, Cormier JM (1994) Vertebral arteriovenous fistulas: a study of 49 cases and review of the literature. Cardiovasc Surg 2:359–369Google Scholar
  70. 70.
    Bahar S, Chiras J, Carpena JP, Meder JF, Bories J (1984) Spontaneous vertebro-vertebral arterio-venous fistula associated with fibro-muscular dysplasia. Report of two cases. Neuroradiology 26:45–49CrossRefGoogle Scholar
  71. 71.
    Deans WR, Bloch S, Leibrock L, Berman BM, Skultety FM (1982) Arteriovenous fistula in patients with neurofibromatosis. Radiology 144:103–107Google Scholar
  72. 72.
    Kahara V, Lehto U, Ryymin P, Helen P (2002) Vertebral epidural arteriovenous fistula and radicular pain in neurofibromatosis type I. Acta Neurochir (Wien) 144:493–496CrossRefGoogle Scholar
  73. 73.
    Taylor CG, Husami Y, Colquhoun IR, Byrne JV (2001) Direct cervical vertebro-venous fistula with radiculopathy and MRI changes resolving after successful endovascular embolisation: a report of two cases. Neuroradiology 43:1118–1122CrossRefGoogle Scholar
  74. 74.
    Ehrlich FE, Carey L, Kitrinos NP (1968) Congenital arteriovenous fistula between the vertebral artery and vertebral vein. Case report. J Neurosurg 29:629–630Google Scholar
  75. 75.
    Geraci AR, Upson JF, Greene DG (1969) Congenital vertebral arteriovenous fistula. JAMA 210:727–728CrossRefGoogle Scholar
  76. 76.
    Righi C, Tartara F, Prada F, Mandelli C, Versari P (2002) Vertebral arterio-venous fistula presenting with intracranial hemorrhage. J Neurosurg Sci 46:71–75; discussion 75–76Google Scholar
  77. 77.
    Stock U, Link J, Dutschke P (1996) Iatrogenic vertebrojugular arteriovenous fistula. Anaesthesia 51:687–688Google Scholar
  78. 78.
    Coric D, Branch CL Jr, Wilson JA, Robinson JC (1996) Arteriovenous fistula as a complication of C1–2 transarticular screw fixation. Case report and review of the literature. J Neurosurg 85:340–343Google Scholar
  79. 79.
    Gonzalez A, Mayol A, Gil-Peralta A, Gonzalez-Marcos JR (2001) Endovascular stent-graft treatment of an iatrogenic vertebral arteriovenous fistula. Neuroradiology 43:784–786CrossRefGoogle Scholar
  80. 80.
    Reivich M, Holling HE, Roberts B, Toole JF (1961) Reversal of blood flow through the vertebral artery and its effect on cerebral circulation. N Engl J Med 265:878–885Google Scholar
  81. 81.
    Editorial (1961) A new vascular syndrome—“the subclavian steal”. N Engl J Med 265:912–913Google Scholar
  82. 82.
    Van Grimberge F, Dymarkowski S, Budts W, Bogaert J (2000) Role of magnetic resonance in the diagnosis of subclavian steal syndrome. J Magn Reson Imaging 12:339–342Google Scholar
  83. 83.
    Rojas RH, Levitsky S, Stansel HC Jr (1966) Acute traumatic subclavian steal syndrome. J Thorac Cardiovasc Surg 51:113–115Google Scholar
  84. 84.
    Folger GM Jr, Shah KD (1965) Subclavian steal in patients with Blalock–Taussig anastomosis. Circulation 31:241–248Google Scholar
  85. 85.
    Roldan-Valadez E, Hernandez-Martinez P, Osorio-Peralta S, Elizalde-Acosta I, Espinoza-Cruz V, Casian-Castellanos G (2003) Imaging diagnosis of subclavian steal syndrome secondary to Takayasu arteritis affecting a left-side subclavian artery. Arch Med Res 34:433–438CrossRefGoogle Scholar
  86. 86.
    Santschi DR, Frahm CJ, Pascale LR, Dumanian AV (1966) The subclavian steal syndrome; clinical and angiographic considerations in 74 cases in adults. J Thorac Cardiovasc Surg 51:103–112Google Scholar
  87. 87.
    Killen DA, Foster JH, Gobbel WG Jr, Stephenson SE Jr, Collins HA, Billings FT, Scott HW Jr (1966) The subclavian steal syndrome. J Thorac Cardiovasc Surg 51:539–560Google Scholar
  88. 88.
    Yip PK, Liu HM, Hwang BS, Chen RC (1992) Subclavian steal phenomenon: a correlation between duplex sonographic and angiographic findings. Neuroradiology 34:279–282CrossRefGoogle Scholar
  89. 89.
    Kliewer MA, Hertzberg BS, Kim DH, Bowie JD, Courneya DL, Carroll BA (2000) Vertebral artery Doppler waveform changes indicating subclavian steal physiology. Am J Roentgenol 174:815–819Google Scholar
  90. 90.
    Davis PC, Nilsen B, Braun IF, Hoffman JC Jr (1986) A prospective comparison of duplex sonography vs angiography of the vertebral arteries. Am J Neuroradiol 7:1059–1064Google Scholar
  91. 91.
    Trattnig S, Karnel F, Kautzky A, Kainberger F, Matula C (1993) Colour Doppler imaging of partial subclavian steal syndrome. Neuroradiology 35:293–295CrossRefGoogle Scholar
  92. 92.
    Turjman F, Tournut P, Baldy-Porcher C, Laharotte JC, Duquesnel J, Froment JC (1992) Demonstration of subclavian steal by MR angiography. J Comput Assist Tomogr 16:756–759Google Scholar
  93. 93.
    Drutman J, Gyorke A, Davis WL, Turski PA (1994) Evaluation of subclavian steal with two-dimensional phase-contrast and two-dimensional time-of-flight MR angiography. Am J Neuroradiol 15:1642–1645Google Scholar
  94. 94.
    Hutchison E, Yates P (1957) Carotico-vertebral stenosis. Lancet 2:2–11CrossRefGoogle Scholar
  95. 95.
    Fisher C, Gore I, Okabe N, White P (1965) Atherosclerosis of the carotid and vertebral arteries—extracranial and intracranial. J Neuropathol Exp Neurol 24:455–476Google Scholar
  96. 96.
    Schwartz CJ, Mitchell JR (1961) Atheroma of the carotid and vertebral arterial systems. Br Med J 5259:1057–1063Google Scholar
  97. 97.
    Caplan LR, Wityk RJ, Glass TA, Tapia J, Pazdera L, Chang HM, Teal P, Dashe JF, Chaves CJ, Breen JC, Vemmos K, Amarenco P, Tettenborn B, Leary M, Estol C, Dewitt LD, Pessin MS (2004) New England Medical Center Posterior Circulation registry. Ann Neurol 56:389–398CrossRefGoogle Scholar
  98. 98.
    Wityk RJ, Chang HM, Rosengart A, Han WC, DeWitt LD, Pessin MS, Caplan LR (1998) Proximal extracranial vertebral artery disease in the New England Medical Center Posterior Circulation registry. Arch Neurol 55:470–478CrossRefGoogle Scholar
  99. 99.
    Kuhl V, Tettenborn B, Eicke BM, Visbeck A, Meckes S (2000) Color-coded duplex ultrasonography of the origin of the vertebral artery: normal values of flow velocities. J Neuroimaging 10:17–21Google Scholar
  100. 100.
    Trattnig S, Hubsch P, Schuster H, Polzleitner D (1990) Color-coded Doppler imaging of normal vertebral arteries. Stroke 21:1222–1225Google Scholar
  101. 101.
    Trattnig S, Matula C, Karnel F, Daha K, Tschabitscher M, Schwaighofer B (1993) Difficulties in examination of the origin of the vertebral artery by duplex and colour-coded Doppler sonography: anatomical considerations. Neuroradiology 35:296–299CrossRefGoogle Scholar
  102. 102.
    Sidhu PS (2000) Ultrasound of the carotid and vertebral arteries. Br Med Bull 56:346–366CrossRefGoogle Scholar
  103. 103.
    de Bray JM, Pasco A, Tranquart F, Papon X, Alecu C, Giraudeau B, Dubas F, Emile J (2001) Accuracy of color-Doppler in the quantification of proximal vertebral artery stenoses. Cerebrovasc Dis 11:335–340CrossRefGoogle Scholar
  104. 104.
    Bhadelia RA, Bengoa F, Gesner L, Patel SK, Uzun G, Wolpert SM, Caplan LR (2001) Efficacy of MR angiography in the detection and characterization of occlusive disease in the vertebrobasilar system. J Comput Assist Tomogr 25:458–465CrossRefGoogle Scholar
  105. 105.
    Leclerc X, Pruvo JP (2000) Recent advances in magnetic resonance angiography of carotid and vertebral arteries. Curr Opin Neurol 13:75–82CrossRefGoogle Scholar
  106. 106.
    Huston J III, Fain SB, Riederer SJ, Wilman AH, Bernstein MA, Busse RF (1999) Carotid arteries: maximizing arterial to venous contrast in fluoroscopically triggered contrast-enhanced MR angiography with elliptic centric view ordering. Radiology 211:265–273Google Scholar
  107. 107.
    Randoux B, Marro B, Koskas F, Chiras J, Dormont D, Marsault C (2003) Proximal great vessels of aortic arch: comparison of three-dimensional gadolinium-enhanced MR angiography and digital subtraction angiography. Radiology 229:697–702Google Scholar
  108. 108.
    Slosman F, Stolpen AH, Lexa FJ, Schnall MD, Langlotz CP, Carpenter JP, Goldberg HI (1998) Extracranial atherosclerotic carotid artery disease: evaluation of non-breath-hold three-dimensional gadolinium-enhanced MR angiography. Am J Roentgenol 170:489–495Google Scholar
  109. 109.
    Leclerc X, Martinat P, Godefroy O, Lucas C, Giboreau F, Ares GS, Leys D, Pruvo JP (1998) Contrast-enhanced three-dimensional fast imaging with steady-state precession (FISP) MR angiography of supraaortic vessels: preliminary results. Am J Neuroradiol 19:1405–1413Google Scholar
  110. 110.
    Trivedi RA, U-King-Im JM, Graves MJ, Kirkpatrick PJ, Gillard JH (2004) Noninvasive imaging of carotid plaque inflammation. Neurology 63:187–188Google Scholar
  111. 111.
    Trivedi RA, U-King-Im JM, Graves MJ, Cross JJ, Horsley J, Goddard MJ, Skepper JN, Quartey G, Warburton E, Joubert I, Wang L, Kirkpatrick PJ, Brown J, Gillard JH (2004) In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35:1631–1635CrossRefGoogle Scholar
  112. 112.
    Yuan C, Mitsumori LM, Beach KW, Maravilla KR (2001) Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 221:285–299PubMedGoogle Scholar
  113. 113.
    Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C (2003) In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging 17:410–420CrossRefPubMedGoogle Scholar
  114. 114.
    Fayad ZA, Fuster V (2001) Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 89:305–316PubMedGoogle Scholar
  115. 115.
    Trivedi RA, U-King-Im JM, Graves MJ, Horsley J, Goddard M, Kirkpatrick PJ, Gillard JH (2004) MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo. Neuroradiology, DOI  10.1007/s00234-004-1247-6
  116. 116.
    Trivedi RA, U-King-Im J, Graves MJ, Horsley J, Goddard M, Kirkpatrick PJ, Gillard JH (2004) Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques. Eur J Vasc Endovasc Surg 28:207–213CrossRefGoogle Scholar
  117. 117.
    Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, Johnstrom P, Davenport AP, Kirkpatrick PJ, Arch BN, Pickard JD, Weissberg PL (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Keng Yeow Tay
    • 1
  • Jean Marie U-King-Im
    • 1
  • Rikin A. Trivedi
    • 1
  • Nicholas J. Higgins
    • 1
  • Justin J. Cross
    • 1
  • John R. Davies
    • 2
  • Peter L. Weissberg
    • 2
  • Nagui M. Antoun
    • 1
  • Jonathan H. Gillard
    • 1
    • 3
    Email author
  1. 1.Department of RadiologyAddenbrooke’s Hospital and University of CambridgeCambridgeUK
  2. 2.Division of Cardiovascular MedicineAddenbrooke’s Hospital and University of CambridgeCambridgeUK
  3. 3.University Department of RadiologyAddenbrooke’s HospitaldCambridgeUK

Personalised recommendations