European Radiology

, Volume 16, Issue 8, pp 1826–1834 | Cite as

Evolving technology in bipolar perfused radiofrequency ablation: assessment of efficacy, predictability and safety in a pig liver model

  • Fernando Burdío
  • Ana Navarro
  • Ramón Sousa
  • José M. Burdío
  • Antonio Güemes
  • Ana Gonzalez
  • Ignacio Cruz
  • Tomás Castiella
  • Ricardo Lozano
  • Enrique Berjano
  • Joan Figueras
  • Miguel A. de Gregorio
Experimental

Abstract

Bipolar radiofrequency (RF) ablation, especially with perfusion of saline, has been shown to increase volume over monopolar conventional methods. The aims of this study are to study whether this method is linked to too flattened thermal lesions and premature rise of impedance and to elucidate some safety concerns. Eighteen RF ablations were performed using a 1.8-mm-diameter bipolar applicator in the liver of nine healthy pigs through laparotomy with or without temporary vascular occlusion [the Pringle maneuver (PGM)]: group A (n=9), without PGM; group B (n=9), with PGM. Hypertonic saline solutions (3% and 20 %) were injected through the applicator at a rate of 400 ml/h during the procedure. The pigs were followed up and they were euthanased on the 15th day. Impedance, current, power output, energy output, temperatures, diameters of thermal lesion, volume, sphericity ratio of thermal lesion were correlated among groups. Impedance at the end of the procedure (50.00 Ω±28.39 and 52.88 Ω±26.77, for groups A and B, respectively) was very similar to the starting impedance (50 Ω). In a median of 1 (range, 0–6) time per RF ablation procedure a reduction of 30 W from the selected power supply was observed during the RF ablation procedure linked to a slight increase of impedance. Volume and short diameter of thermal lesion were 21.28 cm3±11.78 and 2.85 cm±0.87 for group A, 87.51 cm3±25.20 and 4.31 cm±0.65 for group B. Continuous thermal between both electrodes were described with a global sphericity ratio of 1.91. One major complication (thermal injury to the stomach) was encountered in a case of cross-sectional necrosis of the targeted liver and attributed to heat diffusion after the procedure. This method has been shown to determine: (1) the relative control of impedance during the procedure; (2) ovoid and relatively large thermal lesions with less dependence upon closest vessels.

Keywords

Radiofrequency ablation Liver neoplasms Liver interventional procedures 

References

  1. 1.
    Curley SA, Marra P, Beaty K et al (2004) Early and late complications after radiofrequency ablation of malignant liver tumors in 608 patients. Ann Surg 239:450–458PubMedCrossRefGoogle Scholar
  2. 2.
    Wood BJ, Ramkaransingh JR, Fojo T, Walther MM, Libutti SK (2002) Percutaneous tumor ablation with radiofrequency. Cancer 94:443–451PubMedCrossRefGoogle Scholar
  3. 3.
    Curley SA (2003) Radiofrequency ablation of malignant liver tumors. Ann Surg Oncol 10:338–347PubMedCrossRefGoogle Scholar
  4. 4.
    De Baere T, Denys A, Wood BJ et al (2001) Radiofrequency liver ablation: experimental comparative study of water-cooled versus expandable systems. AJR Am J Roentgenol 176:187–192PubMedGoogle Scholar
  5. 5.
    Montgomery RS, Rahal A, Dodd G et al (2004) Radiofrequency ablation of hepatic tumors: variability of lesion size using a single ablation device. AJR Am J Roentgenol 182:657–661PubMedGoogle Scholar
  6. 6.
    Denys AL, De Baere T, KuochV et al (2003) Radiofrequency tissue ablation of the liver: in vivo and ex vivo experiments wit four different systems. Eur Radiol 13:2346–2352PubMedCrossRefGoogle Scholar
  7. 7.
    Mulier S, Mulier P, Ni Y et al (2002) Complications of radiofrequency coagulation of liver tumors. Br J Surg 89:1206–1222PubMedCrossRefGoogle Scholar
  8. 8.
    Mulier S, Miao Y, Mulier et al (2005) Electrodes and multiple electrode systems for radiofrquency ablation: a proposal for updated terminology. Eur Radiol 15:798–808PubMedCrossRefGoogle Scholar
  9. 9.
    Burdío F, Güemes A, Burdío JM et al (1999) Hepatic lesion ablation using bipolar saline-enhanced radiofrequency in the audible spectrum. Acad Radiol 6:680–686PubMedCrossRefGoogle Scholar
  10. 10.
    Burdío F, Güemes A, Burdío JM et al (2003) Large ablation with bipolar saline-enhanced radiofrequency. An experimental study in in-vivo porcine liver with a novel approach. J Surg Res 110:193–201PubMedCrossRefGoogle Scholar
  11. 11.
    Burdío F, Güemes A, Burdío JM et al (2003) A bipolar saline-enhanced electrode for radiofrequency ablation. Results of an experimental study in In vivo porcine liver. Radiology 229:447–456PubMedCrossRefGoogle Scholar
  12. 12.
    Lee JM, Han JK, Kim SH et al (2005) Bipolar radiofrequency ablation in ex vivo bovine liver with the open-perfused system versus the cooled-wet system. Eur Radiol 15:759–764PubMedCrossRefGoogle Scholar
  13. 13.
    Han JK, Lee JM, Kim SH et al (2005) Radiofrequency ablation in the liver using two cooled-wet electrodes in the bipolar mode. Eur Radiol 15:2163–2170PubMedCrossRefGoogle Scholar
  14. 14.
    Pereira PL, Trübenbach J, Schenck M et al (2004) Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology 232:482–490PubMedCrossRefGoogle Scholar
  15. 15.
    Brieger J, Pereira PL, Trübenbach J et al (2003) In vivo efficiency of four commercial monopolar radiofrequency systems. Invest Radiol 38:609–616PubMedCrossRefGoogle Scholar
  16. 16.
    Jain MK, Wolf PF (1999) Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Trans Biomed Eng 46:1405–1412PubMedCrossRefGoogle Scholar
  17. 17.
    Tungjitkusolmun S, Staelin T, Haemmerich et al (2002) Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans Biomed Eng 49:3–9PubMedCrossRefGoogle Scholar
  18. 18.
    Tucker RD, Platz CE, Sievert CE et al (1990) In vivo evaluation of monopolar versus bipolar electrosurgical polypectomy snares. Am J Gastroenterol 851386–1390PubMedGoogle Scholar
  19. 19.
    Tucker RD, Hollenhorst MJ (1993) Bipolar electrosurgical devices. Endosc Surg Allied Technol 1:110–113PubMedGoogle Scholar
  20. 20.
    Becker CD, Jamenson M, Fache JS et al (1989) Catheter for endoluminal bipolar electrocoagulation. Radiology 170:561–562PubMedGoogle Scholar
  21. 21.
    Haemmerich D, Staelin ST, Tungjitkusolmun S et al (2001) Hepatic bipolar radiofrequency ablation between separated multiprong electrodes. IEEE Trans Biomed Eng 48:1145–1152PubMedCrossRefGoogle Scholar
  22. 22.
    Haemmerich D, Tungjitkusolmun S, Staelin ST et al (2002) Finite-element of hepatic multiple probe radio-frequency ablation. IEEE Trans Biomed Eng 49:836–842PubMedCrossRefGoogle Scholar
  23. 23.
    Haemmerich D, Wright AW, Mahvi DM et al (2003) Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: a finite element study. Med Biol Eng Comput 41:317–323PubMedCrossRefGoogle Scholar
  24. 24.
    Burdío F, Navarro A, Sousa R et al (2005) Premature roll-off in radiofrequency ablation using bipolar saline-enhanced electrodes. Eur Radiol 15:1495–1496PubMedCrossRefGoogle Scholar
  25. 25.
    McGahan JP, Gu WZ, Brock JM et al (1996) Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol 3:418–422PubMedCrossRefGoogle Scholar
  26. 26.
    Curley SA, Davidson BS, Fleming et al (1997) Laparoscopically guided bipolar radiofrequency ablation of areas of porcine liver. Surg Endos 11:729–733CrossRefGoogle Scholar
  27. 27.
    Burdio F, Burdio JM, Navarro A et al (2004) Electric influence of NaCl concentration into the tissue in radiofrequency ablation. Radiology 232:932PubMedCrossRefGoogle Scholar
  28. 28.
    Chang CK, Hendy MP, Smith JM et al (2002) Radiofrequency ablation of the porcine liver with complete hepatic vascular occlusion. Ann Surg Oncol 9:594–598PubMedCrossRefGoogle Scholar
  29. 29.
    Goldberg SN, Stein MC, Gazelle GS et al (1999) Percutaneous radiofrequency tissue ablation: optimizacion of pulsed radiofrequency technique to increase coagulation necrosis. J Vasc Interv Radiol 10:907–916PubMedCrossRefGoogle Scholar
  30. 30.
    Ahmad SA (2004) Limitations of radiofrequency ablation in treating liver metastases: lesson in geometry. Ann Surg Oncol 11:358–359PubMedCrossRefGoogle Scholar
  31. 31.
    Chinn SB, Lee FT, Kennedy GD, Chinn C et al (2001) Effect of vascular occlusion on radiofrequency ablation of the liver: results in a porcine liver. AJR Am J Roentgenol 176:789–795PubMedGoogle Scholar
  32. 32.
    Boehm T, Malich A, Goldberg SN et al (2002) Radio-frequency tumor ablation: internally cooled electrode versus saline-enhanced technique in an aggressive rabbit tumor model. Radiology 222:805–813PubMedCrossRefGoogle Scholar
  33. 33.
    Hansen PD, Rogers S, Corless CL et al (1999) Radiofrequency ablations in a pig liver model. J Surg Res 87:114–121PubMedCrossRefGoogle Scholar
  34. 34.
    Scudamore CH, Buczkowski AK, Nagy A et al (1997) Possible injuries to intrahepatic and perihepatic structures with radiofrequency probe. Surg Endosc 11:193Google Scholar
  35. 35.
    Kettenbach J, Köstler W, Rücklinger E et al (2003) Percutaneous saline-enhanced radiofrequency ablation of unresectable hepatic tumors: initial experience in 26 patients. AJR Am J Roentgenol 180:1537–1545PubMedGoogle Scholar
  36. 36.
    Rhim H, Dodd G, Chintapalli KN et al (2004) Radiofrequency thermal ablation of abdominal tumors: lessons learned from complications. Radiographics 24:41–52PubMedCrossRefGoogle Scholar
  37. 37.
    Guillams AR, Lees WR (2003) CT monitoring of contrast doped saline for perfusion radiofrequency electrodes in the ablation of liver tumors (abstract). Presented at the 89th Scientific Assembly of RSNA, Chicago, November 30-December 5, p 589Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Fernando Burdío
    • 1
    • 6
    • 8
  • Ana Navarro
    • 1
  • Ramón Sousa
    • 1
  • José M. Burdío
    • 2
  • Antonio Güemes
    • 1
  • Ana Gonzalez
    • 3
  • Ignacio Cruz
    • 3
  • Tomás Castiella
    • 4
  • Ricardo Lozano
    • 1
  • Enrique Berjano
    • 5
  • Joan Figueras
    • 6
  • Miguel A. de Gregorio
    • 7
  1. 1.Department of Surgery AHospital Clínico Universitario Lozano BlesaZaragozaSpain
  2. 2.Department of Electric Engineering and CommunicationsUniversity of ZaragozaZaragozaSpain
  3. 3.Department of Animal Pathology and Surgery, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
  4. 4.Department of PathologyHospital Clínico Universitario Lozano BlesaZaragozaSpain
  5. 5.Department of Electronic EngineeringPolytechnic University of ValenciaValenciaSpain
  6. 6.Department of SurgeryUniversity of BarcelonaBarcelonaSpain
  7. 7.Department of RadiologyHospital Clínico Universitario Lozano BlesaZaragozaSpain
  8. 8.ZaragozaSpain

Personalised recommendations