Advertisement

European Radiology

, Volume 16, Issue 6, pp 1206–1215 | Cite as

Impact of the z-flying focal spot on resolution and artifact behavior for a 64-slice spiral CT scanner

  • Yiannis Kyriakou
  • Marc Kachelrieβ
  • Michael Knaup
  • Jens U. Krause
  • Willi A. Kalender
Computer Tomography

Abstract

The effect of the z-flying focal spot (zFFS) technology was evaluated by simulations and measurements with respect to resolution and artifact behavior for a 64-slice spiral cone-beam computed tomography (CT) scanner. The zFFS alternates between two z-positions of the X-ray focal spot, acquiring two slices per detector row, which results in double sampling in the z-direction. We implemented a modified reconstruction that is able to obtain images as they would be without zFFS. A delta phantom equipped with a thin gold disc was used to measure slice sensitivity profiles (SSP), and a high-contrast bar phantom was used to quantify the resolution in the x/z-plane with and without zFFS. The zFFS decreases the full width at half maximum (FWHM) of the SSPs by a factor of about 1.4. The double z-sampling allows the separation of 0.4 mm bars in the z-direction compared with 0.6 mm in the case without zFFS. The zFFS effectively reduces windmill artifacts in the reconstructed images while maintaining the transverse resolution, even at the largest available pitch value of 1.5.

Keywords

Spiral CT Image quality Windmill artifacts z-flying focal spot 

Notes

Acknowledgement

We gratefully acknowledge support from Siemens Medical Solutions who provided a Sensation 64 CT scanner to our institute for experimental and clinical work.

References

  1. 1.
    Silver MD, Taguchi K, Hein IA, Han HS, Kazama M, Mori I (2003) Windmill artifact in multislice CT. Proc SPIE 5032:1918–1927CrossRefGoogle Scholar
  2. 2.
    Taguchi K, Aradate H, Saito Y (2004) The cause of the artifact in 4-slice helical computed tomography. Med Phys 31(7):2033–2037CrossRefPubMedGoogle Scholar
  3. 3.
    Kalender WA (2005) Computed Tomography, 2nd edn. Wiley-VCH, New YorkGoogle Scholar
  4. 4.
    Hsieh J (2003) Analytical models for multi-slice helical CT performance parameters. Med Phys 30(2):169–178CrossRefPubMedGoogle Scholar
  5. 5.
    Schardt P, Deuringer J, Freudenberger J, Hell E, Knuepfer W, Mattern D, Schild M (2004) New x-ray tube performance in computed tomography by introducing the rotating envelope tube. Med Phys 32(9):2699–2706CrossRefGoogle Scholar
  6. 6.
    Kachelrieß M, Knaup M, Penßel C, Kalender WA (2005) Flying focal spot (FFS) in cone-beam CT. In: Records of the 2004 IEEE Medical Imaging Conference pp 3759–3763Google Scholar
  7. 7.
    Flohr T, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH (2005) Image reconstruction and image quality evaluation of a 64-slice CT scanner with focal spot. Med Phys 32(8):2536–2547CrossRefPubMedGoogle Scholar
  8. 8.
    Kachelrieß M, Schaller S, Kalender WA (2000) Advanced single-slice rebinning in cone-beam spiral CT”. Med Phys 27:754–772CrossRefPubMedGoogle Scholar
  9. 9.
    Kachelrieß M, Kalender WA (2005) Presampling, algorithm factors, and noise in CT. Med Phys 32(5):1321–1334CrossRefPubMedGoogle Scholar
  10. 10.
    Taguchi T, Aradate H (1998) Algorithm for image reconstruction in multislice helical CT. Med Phys 25(4):550–561CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Yiannis Kyriakou
    • 1
  • Marc Kachelrieβ
    • 1
  • Michael Knaup
    • 1
  • Jens U. Krause
    • 1
  • Willi A. Kalender
    • 1
  1. 1.Institute of Medical PhysicsUniversity Erlangen-NürnbergErlangenGermany

Personalised recommendations