Advertisement

European Radiology

, Volume 16, Issue 5, pp 1054–1065 | Cite as

False-Positive FDG PET Uptake−the Role of PET/CT

  • Sandra J. Rosenbaum
  • Thomas Lind
  • Gerald Antoch
  • Andreas Bockisch
Nuclear Medicine

Abstract

Positron emission tomography (PET) is a powerful molecular imaging technique for the human body-imaging applications currently available. As altered glucose metabolism is characteristic for many malignancies, FDG-PET is mostly used in oncology for staging and therapy control. Although PET is a sensitive tool for detecting malignancy, FDG uptake is not tumor specific. It can also be seen in healthy tissue or in benign disease as inflammation or posttraumatic repair and could be mistaken for cancer. The experienced nuclear medicine physician mostly manages to differentiate malignant from non-malignant FDG uptake, but some findings may remain ambiguous. In these cases, the difficulties in differentiating physiologic variants or benign causes of FDG uptake from tumor tissue can often be overcome by combined PET and CT (PET/CT) as anatomic information is added to the metabolic data. Thus, PET/CT improves the diagnostic accuracy compared to PET alone and helps to avoid unnecessary surgery/therapy. However, PET/CT involves other sources of artifacts that may occur when using CT for attenuation correction of PET or by patient motion caused by respiration or bowel movements.

Keywords

FDG PET PET/CT Pitfalls 

References

  1. 1.
    Avril N (2004) GLUT1 expression in tissue and (18)F-FDG uptake. J Nucl Med 45(6):930-932PubMedGoogle Scholar
  2. 2.
    Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29(10):1393-1398CrossRefPubMedGoogle Scholar
  3. 3.
    Yeung HW, Grewal RK, Gonen M, Schoder H, Larson SM (2003) Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false- positives for PET. J Nucl Med 44(11):1789-1796PubMedGoogle Scholar
  4. 4.
    Cohade C, Osman M, Pannu HK, Wahl RL (2003) Uptake in supraclavicular area fat ("USA-Fat"): description on 18F-FDG PET/CT. J Nucl Med 44(2):170-176PubMedGoogle Scholar
  5. 5.
    Himms-Hagen J (1984) Impaired thermogenesis and brown fat in obesity. Can J Surg 27(2):125PubMedGoogle Scholar
  6. 6.
    Kamel EM, Goerres GW, Burger C, von Schulthess GK, Steinert HC (2002) Recurrent laryngeal nerve palsy in patients with lung cancer: detection with PET-CT image fusion–report of six cases. Radiology 224(1):153-156PubMedCrossRefGoogle Scholar
  7. 7.
    Kostakoglu L, Wong JC, Barrington SF, Cronin BF, Dynes AM, Maisey MN (1996) Speech-related visualization of laryngeal muscles with fluorine-18-FDG. J Nucl Med 37(11):1771-1773PubMedGoogle Scholar
  8. 8.
    Fujii H, Ide M, Yasuda S, Takahashi W, Shohtsu A, Kubo A (1999) Increased FDG uptake in the wall of the right atrium in people who participated in a cancer screening program with whole-body PET. Ann Nucl Med 13(1):55-59PubMedGoogle Scholar
  9. 9.
    Yasuda S, Shohtsu A, Ide M, et al (1998) Chronic thyroiditis: diffuse uptake of FDG at PET. Radiology 207(3):775-778PubMedGoogle Scholar
  10. 10.
    Cohen MS, Arslan N, Dehdashti F, et al (2001) Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery 130(6):941-946CrossRefPubMedGoogle Scholar
  11. 11.
    Lerman H, Metser U, Grisaru D, Fishman A, Lievshitz G, Even-Sapir E (2004) Normal and abnormal 18F-FDG endometrial and ovarian uptake in pre- and postmenopausal patients: assessment by PET/CT. J Nucl Med 45(2):266-271PubMedGoogle Scholar
  12. 12.
    Kosuda S, Fisher S, Kison PV, Wahl RL, Grossman HB (1997) Uptake of 2- deoxy-2-[18F]fluoro-D-glucose in the normal testis: retrospective PET study and animal experiment. Ann Nucl Med 11(3):195-199PubMedCrossRefGoogle Scholar
  13. 13.
    Maurea S, Mainolfi C, Bazzicalupo L, et al (1999) Imaging of adrenal tumors using FDG PET: comparison of benign and malignant lesions. AJR Am J Roentgenol 173(1):25-29PubMedGoogle Scholar
  14. 14.
    Yun M, Kim W, Alnafisi N, Lacorte L, Jang S, Alavi A (2001) 18F-FDG PET in characterizing adrenal lesions detected on CT or MRI. J Nucl Med 42(12):1795-1799PubMedGoogle Scholar
  15. 15.
    Lin EC, Helgans R (2002) Adrenal hyperplasia in Cushing’s syndrome demonstrated by FDG positron emission tomographic imaging. Clin Nucl Med 27(7):516-517CrossRefPubMedGoogle Scholar
  16. 16.
    Shimizu A, Oriuchi N, Tsushima Y, Higuchi T, Aoki J, Endo K (2003) High [18F] 2-fluoro-2-deoxy-D-glucose (FDG) uptake of adrenocortical adenoma showing subclinical Cushing’s syndrome. Ann Nucl Med 17(5):403-406PubMedCrossRefGoogle Scholar
  17. 17.
    Cook GJ, Maisey MN, Fogelman I (1999) Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 26(10):1363-1378CrossRefPubMedGoogle Scholar
  18. 18.
    Patel PM, Alibazoglu H, Ali A, Fordham E, LaMonica G (1996) Normal thymic uptake of FDG on PET imaging. Clin Nucl Med 21(10):772-775CrossRefPubMedGoogle Scholar
  19. 19.
    Brink I, Reinhardt MJ, Hoegerle S, Altehoefer C, Moser E, Nitzsche EU (2001) Increased metabolic activity in the thymus gland studied with 18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med 42(4):591-595PubMedGoogle Scholar
  20. 20.
    Liu RS, Yeh SH, Huang MH, et al (1995) Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of thymoma: a preliminary report. Eur J Nucl Med 22(12):1402-1407CrossRefPubMedGoogle Scholar
  21. 21.
    Tatlidil R, Jadvar H, Bading JR, Conti PS (2002) Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology 224(3):783-787PubMedCrossRefGoogle Scholar
  22. 22.
    Delbeke D, Martin WH (2004) PET and PET-CT for evaluation of colorectal carcinoma. Semin Nucl Med 34(3):209-223CrossRefPubMedGoogle Scholar
  23. 23.
    Denecke T, Rau B, Hoffmann KT, et al (2005) Comparison of CT, MRI and FDG- PET in response prediction of patients with locally advanced rectal cancer after multimodal preoperative therapy: is there a benefit in using functional imaging? Eur Radiol 15(8):1658-1666CrossRefPubMedGoogle Scholar
  24. 24.
    Even-Sapir E, Parag Y, Lerman H, et al (2004) Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology 232(3):815-822PubMedCrossRefGoogle Scholar
  25. 25.
    Veit P, Antoch G, Stergar H, Bockisch A, Forsting M, Kuehl H (2005) Detection of residual tumor after radiofrequency ablation of liver metastasis with dual- modality PET/CT: initial results. Eur Radiol 16(1):80–87CrossRefPubMedGoogle Scholar
  26. 26.
    Cohade C, Osman M, Leal J, Wahl RL (2003) Direct comparison of (18)F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 44(11):1797-1803PubMedGoogle Scholar
  27. 27.
    Wahl RL (2004) Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med 45 Suppl 1:82S-95SPubMedGoogle Scholar
  28. 28.
    Chung JH, Cho KJ, Lee SS, et al (2004) Overexpression of Glut1 in lymphoid follicles correlates with false-positive (18)F-FDG PET results in lung cancer staging. J Nucl Med 45(6):999-1003PubMedGoogle Scholar
  29. 29.
    Tomita M, Ichinari H, Tomita Y, et al (2003) A case of non-small cell lung cancer with false-positive staging by positron emission tomography. Ann Thorac Cardiovasc Surg 9(6):397-400PubMedGoogle Scholar
  30. 30.
    Kamel EM, McKee TA, Calcagni ML, et al (2005) Occult lung infarction may induce false interpretation of (18)F-FDG PET in primary staging of pulmonary malignancies. Eur J Nucl Med Mol Imaging Feb 22Google Scholar
  31. 31.
    Shon IH, Fogelman I (2003) F-18 FDG positron emission tomography and benign fractures. Clin Nucl Med 28(3):171-175CrossRefPubMedGoogle Scholar
  32. 32.
    von Schulthess GK, Meier N, Stumpe KD (2001) Joint accumulations of FDG in whole body PET scans. Nuklearmedizin 40(6):193-197PubMedGoogle Scholar
  33. 33.
    Dehdashti F, Siegel BA, Griffeth LK, et al (1996) Benign versus malignant intraosseous lesions: discrimination by means of PET with 2-[F-18]fluoro-2- deoxy-D-glucose. Radiology 200(1):243-247PubMedGoogle Scholar
  34. 34.
    Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19(1):61-77PubMedGoogle Scholar
  35. 35.
    Sugawara Y, Fisher SJ, Zasadny KR, Kison PV, Baker LH, Wahl RL (1998) Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 16(1):173-180PubMedGoogle Scholar
  36. 36.
    Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF (2004) To enhance or not to enhance? 18F-FDG and CT contrast agents in dual- modality 18F-FDG PET/CT. J Nucl Med 45 Suppl 1:56S-65SPubMedGoogle Scholar
  37. 37.
    Antoch G, Freudenberg LS, Egelhof T, et al (2002) Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med 43(10):1339-1342PubMedGoogle Scholar
  38. 38.
    Antoch G, Freudenberg LS, Stattaus J, et al (2002) Whole-body positron emission tomography-CT: optimized CT using oral and IV contrast materials. AJR Am J Roentgenol 179(6):1555-1560PubMedGoogle Scholar
  39. 39.
    Beyer T, Antoch G, Muller S, et al (2004) Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 45 Suppl 1:25S-35SPubMedGoogle Scholar
  40. 40.
    Beyer T, Antoch G, Bockisch A, Stattaus J (2005) Optimized intravenous contrast administration for diagnostic whole-body 18F-FDG PET/CT. J Nucl Med 46(3):429-435PubMedGoogle Scholar
  41. 41.
    Kamel EM, Burger C, Buck A, von Schulthess GK, Goerres GW (2003) Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 13(4):724-728PubMedGoogle Scholar
  42. 42.
    Bockisch A, Beyer T, Antoch G, et al (2004) Positron emission tomography/computed tomography–imaging protocols, artifacts, and pitfalls. Mol Imaging Biol 6(4):188-199CrossRefPubMedGoogle Scholar
  43. 43.
    Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schulthess GK (2002) PET-CT image co-registration in the thorax: influence of respiration. Eur JNucl Med Mol Imaging 29(3):351-360CrossRefGoogle Scholar
  44. 44.
    Osman MM, Cohade C, Nakamoto Y, Wahl RL (2003) Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 30(4):603-606PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Sandra J. Rosenbaum
    • 1
  • Thomas Lind
    • 1
  • Gerald Antoch
    • 2
  • Andreas Bockisch
    • 1
  1. 1.Department of Nuclear MedicineUniversity of EssenEssenGermany
  2. 2.Department of RadiologyUniversity of EssenEssenGermany

Personalised recommendations