European Radiology

, Volume 16, Issue 5, pp 1041–1049 | Cite as

Effects of iodinated contrast media on blood and endothelium

  • Members of the Contrast Media Safety Committee of the European Society of Urogenital Radiology (ESUR)
  • Peter Aspelin
  • Fulvio Stacul
  • Henrik S. Thomsen
  • Sameh K. Morcos
  • Aart J. van der Molen
Contrast Media


The aim of the study was to assess the effects of iodinated contrast media on blood components and endothelium based on experimental and clinical studies and to produce clinically relevant guidelines for reducing thrombotic and hematologic complications following the intravascular use of contrast media. A report was drafted after review of the literature and discussions among the members of the Contrast Media Safety Committee of the European Society of Urogenital Radiology. The final report was produced following discussion at the 12th European Symposium on Urogenital Radiology in Ljubljana, Slovenia (2005). Experimental data indicate that all iodinated contrast media produce an anticoagulant effect and that this effect is greater with ionic contrast media. Several of the in vitro and experimental in vivo studies on haematological effects of contrast media have not been confirmed by clinical studies. Low- or iso-osmolar contrast media should be used for diagnostic and interventional angiographic procedures, including phlebography. Meticulous angiographic technique is the most important factor for reducing the thrombotic complications associated with angiographic procedures. Drugs and interventional devices that decrease the risk of thromboembolic complications during interventional procedures minimize the importance of the effects of contrast media.


Iodinated contrast media Coagulation Endothelium Blood cells Thrombosis 


  1. 1.
    Aspelin P, Stöhr-Liessen M, Almén T (1980) Effect of Iohexol on human erythrocytes, I. Changes of red cell morphology in vitro. Acta Radiol Suppl 362:117–122PubMedGoogle Scholar
  2. 2.
    Nash GB, Meiselman HJ (1991) Effect of dehydration on the viscoelastic behaviour of red cells. Blood Cells 17:517–522PubMedGoogle Scholar
  3. 3.
    Chronos NAF, Goodall AH, Wilson DJ, Sigwart U, Buller NP (1993) Profound platelet degranulation is an important side effect of some types of contrast media used in interventional cardiology. Circulation 88:2035–2044PubMedGoogle Scholar
  4. 4.
    Hardeman MR, Goedhart P, Koen IY (1991) The effect of low-osmolar ionic and nonionic contrast media on human blood viscosity, erythrocyte morphology, and aggregation behavior. Invest Radiol 26:810–819PubMedGoogle Scholar
  5. 5.
    Aspelin P, Nilsson PE, Schmid-Schonbein H, Schroder S, Simon R (1987) Effect of four nonionic contrast media on red blood cells in vitro. III. Deformability. Acta Radiol Suppl 370:89–91PubMedGoogle Scholar
  6. 6.
    Aspelin P, Schmid-Schönbein H (1978) Effect of ionic and nonionic contrast media on red cell aggregation in vitro. Acta Radiol Diagn (Stockh) 19:766–784Google Scholar
  7. 7.
    Aspelin P (1992) Contrast media and red blood cell aggregation: interaction dangerous or harmless from a clinical view—an overview. Clin Hemorheol Microcirc 12:401–406Google Scholar
  8. 8.
    Losco P, Nash G, Stone P, Ventre J (2001) Comparison of the effects of radiographic contrast media on dehydration and filterability of red blood cells from donors homozygous for hemoglobin A or hemoglobin S. Am J Hematol 68:149–158CrossRefPubMedGoogle Scholar
  9. 9.
    Dawson P, Harrison M, Weisblatt E (1983) Effect of contrast media on red cell filtrability and morphology. Br J Radiol 56:707–710PubMedCrossRefGoogle Scholar
  10. 10.
    Le Mignon MM, Ducret MN, Bonnemain B, Donadieu AM (1988) Effect of contrast media on whole blood filtrability. Acta Radiol 29:593–597PubMedGoogle Scholar
  11. 11.
    Strickland N, Rampling M, Dawson P, Martin G (1992) The effects of contrast media on the rheological properties of blood. Clin Hemorheol Microcirc 12:369–379Google Scholar
  12. 12.
    Pugh ND (1996) Haemodynamic and rheological effects of contrast media: the role of viscosity and osmolality. Eur Radiol 6 [Suppl 2]:S13–S15CrossRefPubMedGoogle Scholar
  13. 13.
    Morcos SK, Dawson P, Pearson JD, et al (1998) The haemodynamic effects of iodinated water soluble radiographic contrast media: a review. Eur J Radiol 29:31–46CrossRefPubMedGoogle Scholar
  14. 14.
    Mills SR, Jackson BF, Older RA, Heaston DK, Moore AV (1980) The incidence, aetiologies and avoidance of complications of pulmonary angiography in a large series. Radiology 136:295–299PubMedGoogle Scholar
  15. 15.
    Almén T, Aspelin P, Nilsson P (1980) Aortic and pulmonary arterial pressure after injection of contrast media into the right atrium of the rabbit. Comparison between metrizoate, ioxaglate and iohexol. Acta Radiol Suppl 362:37–41PubMedGoogle Scholar
  16. 16.
    Liss P, Nygren A, Olsson U, Ulfendahl HR, Erikson U (1996) Effects of contrast media and mannitol on renal medullary blood flow and red cell aggregation in the rat kidney. Kidney Int 49:1268–1275PubMedGoogle Scholar
  17. 17.
    Galtung HK, Sörlundsengen V, Sakariassen KS, Benestad H (2002) Effect of radiologic contrast media on cell volume regulatory mechanisms in human red blood cells. Acad Radiol 9:878–885CrossRefPubMedGoogle Scholar
  18. 18.
    Strickland NH, Rampling MW, Dawson P, Martin G (1992) Contrast media-induced effects on blood rheology and their importance in angiography. Clin Radiol 45:240–242CrossRefPubMedGoogle Scholar
  19. 19.
    Rasmussen F, Georgsen J, Grunnet N (1988) Influence of radiographic contrast media on phagocytosis. Acta Radiol 29:589–592PubMedGoogle Scholar
  20. 20.
    Rasmussen F (1998) The influence of radiographic contrast media on some granulocyte functions. Acta Radiol Suppl 419:333–337Google Scholar
  21. 21.
    Rasmussen F, Georgsen J, Antonsen S, Grunnet N (1992) Phagocytic properties of granulocytes after intravenous injection of ioxaglate or iohexol. Acta Radiol 33:271–274PubMedGoogle Scholar
  22. 22.
    Rasmussen F, Georgsen J, Pedersen JO, Antonsen S (1992) Granulocyte chemotaxis before and after urography. Influence of four different contrast media. Acta Radiol 33:164–168PubMedGoogle Scholar
  23. 23.
    Rasmussen F, Antonsen S, Georgsen J (1992) Granulocyte adherence is inhibited by radiographic contrast media in vitro. Acta Radiol 33:379–383PubMedGoogle Scholar
  24. 24.
    Barani J, Gottsater A, Mattiasson I, Lindblad B (2002) Platelet and leukocyte activation during aortoiliac angiography and angioplasty. Eur J Vasc Endovasc Surg 23:220–225CrossRefPubMedGoogle Scholar
  25. 25.
    Blann AD, Adams R, Ashleigh R, Naser S, Kirkpatrick U, McCollum CN (2001) Changes in endothelial, leucocyte and platelet markers following contrast medium injection during angiography in patients with peripheral artery disease. Br J Radiol 74:811–817PubMedGoogle Scholar
  26. 26.
    Zhan X, Agrawal DK, Thorpe PE (1998) Effect of iodinated contrast media on neutrophil adhesion to cultured endothelial cells. J Vasc Interv Radiol 9:808–816; erratum in J Vasc Interv Radiol (1998) 9:889PubMedCrossRefGoogle Scholar
  27. 27.
    Hernanz-Schulman M, Vanholder R, Waterloos M-A, Hakim R, Schulman G (2000) Effect of radiographic contrast agents on leukocyte metabolic response. Pediatr Radiol 30:361–368CrossRefPubMedGoogle Scholar
  28. 28.
    Fanning NF, Manning BJ, Buckley J, Redmond HP (2002) Iodinated contrast media induced neutrophil apoptosis through a mitochondrial and caspase mediated pathway. Br J Radiol 75:861–873PubMedGoogle Scholar
  29. 29.
    Laskey WK, Gellman J (2003) Inflammatory markers increase following exposure to radiographic contrast media. Acta Radiol 44:498–503CrossRefPubMedGoogle Scholar
  30. 30.
    Pearson JD (1991) Endothelial cell biology. Radiology 179:9–14PubMedGoogle Scholar
  31. 31.
    Morcos SK (1998) Contrast media-induced nephrotoxicity—questions and answers. Br J Radiol 71:357–365PubMedGoogle Scholar
  32. 32.
    Oldroyd SD, Morcos SK (2000) Endothelin: what does the radiologist need to know? Br J Radiol 73:1246–1251PubMedGoogle Scholar
  33. 33.
    Schwartz D, Blum M, Peer G, et al (1994) Role of nitric oxide (EDRF) in radiocontrast acute renal failure in rats. Am J Physiol 267:F374–F379PubMedGoogle Scholar
  34. 34.
    Heyman S, Goldfarb M, Carmeli F, Shina A, Rahmilewitz D, Brezis M (1998) Effects of radiocontrast agents on intrarenal nitric oxide (NO) and NO synthase activity. Exp Nephrol 6:557–562CrossRefPubMedGoogle Scholar
  35. 35.
    Barstad RM, Buchmann MS, Hamers MJ, et al (1996) Effects of ionic and nonionic contrast media on endothelium and on arterial thrombus formation. Acta Radiol 37:954–961PubMedGoogle Scholar
  36. 36.
    Wilson AJ, Sage MR (1994) Cytochemical studies on contrast medium-induced blood–brain barrier damage. Invest Radiol 29 [Suppl 2]:S105–S107PubMedGoogle Scholar
  37. 37.
    Laerum F (1983) Acute damage to human endothelial cells by brief exposure to contrast media in vitro. Radiology 147:681–684PubMedGoogle Scholar
  38. 38.
    Morgan DML, Bettmann MA (1989) Effects of X-ray contrast media and radiation on human vascular endothelial cells in vitro. Cardiovasc Interv Radiol 12:154–160Google Scholar
  39. 39.
    Fauser C, Ullisch EV, Kubler W, Haller C (2001) Differential effects of radiocontrast agents on human umbilical vein endothelial cells: cytotoxicity and modulators of thrombogenicity. Eur J Med Res 6:465–472PubMedGoogle Scholar
  40. 40.
    Gabelmann A, Haberstroh J, Weyrich G (2001) Ionic and nonionic contrast agent-mediated endothelial injury. Quantitative analysis of cell proliferation during endothelial repair. Acta Radiol 42:422–425PubMedGoogle Scholar
  41. 41.
    Sumimura T, Sendo T, Itoh Y, et al (2003) Calcium-dependent injury of human microvascular endothelial cells induced by variety of iodinated radiographic contrast media. Invest Radiol 38:366–374CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang H, Holt CM, Malik N, Shepherd L, Morcos SK (2000) Effects of radiographic contrast media on proliferation and apoptosis of human vascular endothelial cells. Br J Radiol 73:1034–1041PubMedGoogle Scholar
  43. 43.
    Krause W, Niehues D (1996) Biochemical characterization of X-ray contrast media. Invest Radiol 31:30–42CrossRefPubMedGoogle Scholar
  44. 44.
    Dawson P (1996) X-ray contrast-enhancing agents. Eur J Radiol 23:172–177CrossRefPubMedGoogle Scholar
  45. 45.
    Nordby A, Thorstensen K, Halgunset J, Haugen OA, Solberg S (1989) Effects on the ATP content of cultured cells after radiographic contrast media exposure—evidence for accumulation of contrast media in cultured cells. Acta Radiol 30:541–547PubMedCrossRefGoogle Scholar
  46. 46.
    Morcos SK (2003) Effects of radiographic contrast media on the lung. Br J Radiol 76:290–295CrossRefPubMedGoogle Scholar
  47. 47.
    Furuta W, Yamauchi A, Dohgu S, et al (2002) Contrast media increase vascular endothelial permeability by inhibiting nitric oxide production. Invest Radiol 37:13–19CrossRefPubMedGoogle Scholar
  48. 48.
    Sendo T, Kataoka Y, Takeda Y, Furuta W, Oishi R (2000) Nitric oxide protects against contrast media-induced pulmonary vascular permeability in rats. Invest Radiol 35:472–478CrossRefPubMedGoogle Scholar
  49. 49.
    Tominaga K, Kataoka Y, Sendo T, Furuta W, Niizeki M, Oishi AR (2001) Contrast media-induced pulmonary vascular hyperpermeability is aggravated in a rat climacterium model. Invest Radiol 36:131–135CrossRefPubMedGoogle Scholar
  50. 50.
    Furuta W, Sendo T, Kataoka Y, Oishi R (2001) Morphologic degeneration of human microvascular endothelial cells induced by iodinated contrast media. Acad Radiol 8:158–161CrossRefPubMedGoogle Scholar
  51. 51.
    Emery CJ, Fang L, Laude EA, Morcos SK (2001) Effects of radiographic contrast media on pulmonary vascular resistance of normoxic and chronically hypoxic pulmonary hypertensive rats. Br J Radiol 74:1109–1117PubMedGoogle Scholar
  52. 52.
    Idee JM, Prigent P, Corot C (2002) Effects of ioxaglate on cultured microvascular endothelial cells: do all in vitro studies actually reflect clinical situations? Acad Radiol 9:98–100CrossRefPubMedGoogle Scholar
  53. 53.
    Ferguson JJ, Quinn M, Moake JL (2000) Platelet physiology. In: Ferguson JJ, Chronos NA, Harrington RA (eds) Antiplatelet therapy in clinical practice. Martin Dunitz, London, UK, pp 15–34Google Scholar
  54. 54.
    Becker RC (2001) Markers of platelet activation and thrombin generation. Cardiovasc Toxicol 1:141–145CrossRefPubMedGoogle Scholar
  55. 55.
    Grabowski EF, Rodriquez M, McDonnel SL (1991) Platelet adhesion/aggregation and endothelial cell function in flowing blood: effect of contrast media. Semin Hematol 28:60–65PubMedGoogle Scholar
  56. 56.
    Markou CP, Chronos NAF, Hanson SR (2001) Antithromotic effects of ionic and nonionic contrast media in nonhuman primates. Thromb Haemost 85:488–493PubMedGoogle Scholar
  57. 57.
    Li X, Gabriel DA (1997) Differences between contrast media in the inhibition of platelet activation by specific platelet agonists. Acad Radiol 4:108–114CrossRefPubMedGoogle Scholar
  58. 58.
    Corot C, Chronos N, Sabattier V (1996) In vitro comparison of the effects of contrast media on coagulation and platelet activation. Blood Coagul Fibrinolysis 7:602–608PubMedGoogle Scholar
  59. 59.
    Zir LM, Carvalho AC, Hawthorne JW, Colman RW, Lees RS (1974) Effect of contrast agents on platelet aggregation and 14C-serotonin release. N Engl J Med 291:134–135PubMedCrossRefGoogle Scholar
  60. 60.
    Heptinstall S, White A, Edwards N, et al (1998) Differential effects of three radiographic contrast media on platelet aggregation and degranulation: implications for clinical practice? Br J Haematol 103:1023–1030CrossRefPubMedGoogle Scholar
  61. 61.
    Eloy R, Corot C, Belleville J (1991) Contrast media for angiography: physicochemical properties, pharmacokinetics and biocompatibility. Clin Mater 7:89–197CrossRefPubMedGoogle Scholar
  62. 62.
    Labarthe B, Idée JM, Burnett R, Corot C (2003) In vivo comparative antithrombotic effect of ioxaglate and iohexol and interaction with the platelet antiaggregant clopidogrel. Invest Radiol 38:34–43CrossRefPubMedGoogle Scholar
  63. 63.
    Albanese JR, Venditto JA, Patel GC, Ambrose JA (1995) Effects of ionic and nonionic contrast media on in vitro and in vivo platelet activation. Am J Cardiol 76:1059–1063CrossRefPubMedGoogle Scholar
  64. 64.
    Arora R, Khandelwal M, Gopal A (1991) In vivo effects of nonionic and ionic contrast media on beta-thromboglobulin and fibrinopeptide levels. J Am Coll Cardiol 17:1533–1536PubMedCrossRefGoogle Scholar
  65. 65.
    Brzosko M, Cyrylowski L, Brzosko I, Domanski Z, Fiedorowicz-Fabrycy I (1997) Effects of ionic and nonionic contrast media on platelet function as evaluated by plasma concentration on beta-thromboglobulin. Br J Radiol 70:1239–1244PubMedGoogle Scholar
  66. 66.
    Polanowska R, Wilczynska m, Slawinski W, Goch JH, Augustiniak W, Cierniewski CS (1992) Changes in platelet activity and tissue plasminogen activator during arteriography in patients with chronic limb ischaemia. Thromb Res 65:663–665CrossRefPubMedGoogle Scholar
  67. 67.
    Jung F, Spitzer SG, Pindur G (2002) Effect of an ionic compared to a nonionic X-ray contrast agent on platelets and coagulation during diagnostic cardiac catheterisation. Pathophysiol Haemost Thromb 32:121–126CrossRefPubMedGoogle Scholar
  68. 68.
    Dalby MCD, Davidson SJ, Burman JF, Clague J, Sigwart U, Davies SW (2002) Systemic platelet effects of contrast media: implications for cardiologic research and clinical practice. Am Heart J 143:E1CrossRefPubMedGoogle Scholar
  69. 69.
    Stormorken H, Skalpe IO, Testart MC (1986) Effects of various contrast media on coagulation, fibrinolysis and platelet function. An in vitro and in vivo study. Invest Radiol 21:348–354PubMedGoogle Scholar
  70. 70.
    Corot C, Perrin JM, Belleville J, Amiel M, Eloy R (1989) Effect of iodinated contrast media on blood clotting. Invest Radiol 24:390–393PubMedGoogle Scholar
  71. 71.
    Engelhart JA, Smith DC, Maloney MD, Westengard JC, Bull BS (1988) A technique for estimating the probability of clots in blood/contrast agent mixtures. Invest Radiol 23:923–927PubMedGoogle Scholar
  72. 72.
    Grabowski EF, Kaplan KL, Halpern EF (1991) Anticoagulant effects of nonionic versus ionic contrast media in angiography syringes. Invest Radiol 26:417–421PubMedGoogle Scholar
  73. 73.
    Parvez Z, Moncada R (1986) Nonionic contrast medium: effects on blood coagulation and complement activation in vitro. Angiology 37:358–364PubMedGoogle Scholar
  74. 74.
    Parvez Z, Vik H (1991) Nonionic contrast media and blood clotting. A critical review. Invest Radiol 26 [Suppl 1]:S103–S106; discussion S107–S109PubMedGoogle Scholar
  75. 75.
    Rasuli P, McLeish WA, Hammond DI (1989) Anticoagulant effects of contrast materials: in vitro study of iohexol, ioxaglate and diatrizoate. AJR Am J Roentgenol 152:309–311PubMedGoogle Scholar
  76. 76.
    Melton LG, Muga KM, Gabriel DA (1995) Effect of contrast media on in vitro bleeding time: assessment by a hollow fiber instrument. Acad Radiol 2:239–243CrossRefPubMedGoogle Scholar
  77. 77.
    Fay WP, Parker AC (1998) Effects of radiographic contrast agents on thrombin formation and activity. Thromb Haemost 80:266–272PubMedGoogle Scholar
  78. 78.
    Idée J-M, Corot C (1999) Thrombotic risk associated with use of iodinated contrast media in interventional cardiology: pathophysiology and clinical aspects. Fundam Clin Pharmacol 13:613–623PubMedCrossRefGoogle Scholar
  79. 79.
    Dawson P, Hawitt P, Mackle IJ, Machin SJ, Amin S, Bradshaw A (1986) Contrast, coagulation and fibrinolysis. Invest Radiol 21:248–252PubMedGoogle Scholar
  80. 80.
    Dawson P (1999) Contrast media interactions with endothelium and the blood. In: Dawson P, Cosgrove DO, Grainger RG (eds) Textbook of contrast media, Martin Dunitz, London, pp 191–209Google Scholar
  81. 81.
    Al Dieri R, Beguin S, Hemker C (2003) The ionic contrast medium ioxaglate interferes with thrombin-mediated feedback activation of factor V, factor VIII and platelets. J Thromb Haemost 1:269–274CrossRefPubMedGoogle Scholar
  82. 82.
    Al Dieri R, de Muinck E, Hemker C, Beguin S (2001) An ionic contrast agent inhibits platelet-dependent thrombin generation and boots the effect of abciximab. Thromb Haemost 85:944–945PubMedGoogle Scholar
  83. 83.
    Robertson HJF (1987) Blood clot formation in angiographic syringes containing nonionic contrast media. Radiology 163:621–622Google Scholar
  84. 84.
    Bashore TM, Davidson CK, Mark DB (1988) Iopamidol use in the cardiac catheterization laboratory: a retrospective analysis of 3313 patients. Cardiology 5:60–100Google Scholar
  85. 85.
    Grollman JH Jr, Liu CK, Astone RA, Lurie MD (1988) Thromboembolic complications in coronary angiography associated with the use of nonionic contrast medium. Catheter Cardiovasc Diagn 14:159–164Google Scholar
  86. 86.
    Millet PJ, Sestier F (1989) Thromboembolic complications with nonionic contrast media. Catheter Cardiovasc Diagn 17:192Google Scholar
  87. 87.
    Davidson CJ, Mark DB, Pieper KS, et al (1990) Thrombotic and cardiovascular complications related to nonionic contrast media during cardiac catheterization: analysis of 8517 patients. Am J Cardiol 65:1481–1484CrossRefPubMedGoogle Scholar
  88. 88.
    Schrader R (1996) Thrombogenic potential of nonionic contrast media, fact or fiction? Eur J Radiol 23 [Suppl 1]:S10–S13PubMedGoogle Scholar
  89. 89.
    Piessens JH, Stammen F, Vrolix MC, et al (1993) Effects of an ionic versus a nonionic low osmolar contrast agent on the thrombotic complications of coronary angioplasty. Catheter Cardiovasc Diagn 28:99–105Google Scholar
  90. 90.
    Grines CL, Schreiber TL, Savas V, et al (1996) A randomized trial of low osmolar ionic versus nonionic contrast media in patients with myocardial infarction or unstable angina undergoing percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 27:1381–1386CrossRefPubMedGoogle Scholar
  91. 91.
    Esplugas E, Cequier A, Jara F, et al (1991) Risk of thrombosis during coronary angioplasty with low osmolality contrast media. Am J Cardiol 68:1020–1024CrossRefPubMedGoogle Scholar
  92. 92.
    Malekianpour M, Bonan R, Lespérance J, Gosselin G, Hudon G, Doucet S (1998) Comparison of ionic and nonionic low osmolar contrast media in relation to thrombotic complications of angioplasty in patients with unstable angina. Am Heart J 135:1067–1075CrossRefPubMedGoogle Scholar
  93. 93.
    Schrader R, Esch I, Ensslen R, et al (1999) A randomized trial comparing the impact of a nonionic (iomeprol) versus an ionic (ioxaglate) low osmolar contrast medium on abrupt vessel closure and ischaemic complications after coronary angioplasty. J Am Coll Cardiol 33:395–402CrossRefPubMedGoogle Scholar
  94. 94.
    Fleisch M, Mulhauser B, Garachemani A, et al (1999) Impact of ionic (ioxaglate) and nonionic (ioversol) contrast media on PTCA-related complications. J Am Coll Cardiol 33 [Suppl A]:85A; abstract 1188–1192Google Scholar
  95. 95.
    Danzi GB, Capuano C, Sesana M, Predolini S, Baglini R (2003) Nonionic low-osmolar contrast media have no impact on major adverse cardiac events in patients undergoing coronary stenting with appropriate antiplatelet therapy. Catheter Cardiovasc Interv 60:477–482CrossRefPubMedGoogle Scholar
  96. 96.
    Scheller B, Hennen B, Pohl A, Schieffer H, Markwirth T (2001) Acute and subacute stent occlusion: risk reduction by ionic contrast media. Eur Heart J 22:385–391CrossRefPubMedGoogle Scholar
  97. 97.
    Cucherat M, Leizorovicz A (1999) Effects of nonionic contrast media on abrupt vessel closure and ischaemic complications after angioplasty. A meta-analysis. Am J Cardiol [Suppl] 84:98PGoogle Scholar
  98. 98.
    Bertrand ME, Esplugas E, Piessens J, Rasch W (2000) Influence of a nonionic, iso-osmolar contrast medium (iodixanol) versus an ionic, low-osmolar contrast medium (ioxaglate) on major adverse cardiac events in patients undergoing percutaneous transluminal coronary angioplasty: a multicenter, randomized, double-blind study. Visipaque in percutaneous transluminal coronary angioplasty VIP Trial Investigators. Circulation 101:131–136PubMedGoogle Scholar
  99. 99.
    Davidson CJ, Laskey WK, Hermiller JB, et al (2000) Randomized trial of contrast media utilization in high-risk PTCA. The COURT trial. Circulation 101:2172–2177PubMedGoogle Scholar
  100. 100.
    Sutton AGC, Ashton VJ, Campbell PG, Price DJA, Hall JA, de Belder MA (2002) A randomized prospective trial of ioxaglate 320 (Hexabrix) vs iodixanol 320 (Visipaque) in patients undergoing percutaneous coronary intervention. Catheter Cardiovasc Interv 57:346–352CrossRefPubMedGoogle Scholar
  101. 101.
    Dehmer GJ, Gresalfi N, Daly D, Oberhardt B, Tate DA (1995) Impairment of fibrinolysis by streptokinase, urokinase and recombinant tissue-type plasminogen activator in the presence of radiographic contrast agents. J Am Coll Cardiol 25:1069–1075CrossRefPubMedGoogle Scholar
  102. 102.
    Gabriel DA, Jones MR, Reece NS, Boothroyd E, Bashore T (1991) Platelet and fibrin modification by radiographic contrast media. Circ Res 68:881–887PubMedGoogle Scholar
  103. 103.
    Parvez Z, Moncada R, Messmore HL, Fareed J (1982) Ionic and nonionic contrast media interaction with anticoagulant drugs. Acta Radiol Diagn (Stockh) 23:401–404Google Scholar
  104. 104.
    Jones CI, Goodal AH (2003) Differential effects of the iodinated contrast agents ioxaglate, iohexol and iodixanol on thrombus formation and fibrinolysis. Thromb Res 112:65–71CrossRefPubMedGoogle Scholar
  105. 105.
    Pislaru S, Pislaru C, Szilard M, Arnout J, van der Werf F (1998) In vivo effects of contrast media on coronary thrombolysis. J Am Coll Cardiol 32:1102–1108CrossRefPubMedGoogle Scholar
  106. 106.
    Van Beek EJR, Levi M, Reekers JA, Hack CE, Buller HR, Ten Cate JW (1994) Increased plasma levels of PAI-1 after administration of nonionic contrast medium in patients undergoing pulmonary angiography. Radiology 193:821–823PubMedGoogle Scholar
  107. 107.
    Morcos SK, Thomsen HS, Exley CM, Members of the Contrast Media Safety Committee of the European Society of Urogenital Radiology (ESUR) (2005) Contrast media: interaction with other drugs and clinical tests. Eur Radiol 15:1463–1468CrossRefPubMedGoogle Scholar
  108. 108.
    Aguirre FV, Simoons ML, Ferguson JJ, et al (1997) Impact of contrast media on clinical outcomes following percutaneous coronary interventions with platelet glycoprotein IIb/IIIa inhibition: meta-analysis of clinical trials with abciximab. Circulation 96 [Suppl 1]:161Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Members of the Contrast Media Safety Committee of the European Society of Urogenital Radiology (ESUR)
  • Peter Aspelin
    • 1
  • Fulvio Stacul
    • 2
  • Henrik S. Thomsen
    • 3
  • Sameh K. Morcos
    • 4
  • Aart J. van der Molen
    • 5
  1. 1.Division of Radiology, Centre for Surgical SciencesKarolinska Institute/Huddinge University HospitalStockholmSweden
  2. 2.Institute of RadiologyTriesteItaly
  3. 3.Department of Diagnostic Radiology 54E2Copenhagen University Hospital at HerlevHerlevDenmark
  4. 4.Department of Diagnostic Imaging, Northern General HospitalSheffield Teaching Hospitals NHS TrustSheffieldUK
  5. 5.Department of RadiologyLeiden University Medical CentreLeidenThe Netherlands

Personalised recommendations