European Radiology

, Volume 16, Issue 3, pp 634–641

MRI of the pelvis at 3 T: very high spatial resolution with sensitivity encoding and flip-angle sweep technique in clinically acceptable scan time

  • Nuschin Morakkabati-Spitz
  • Jürgen Gieseke
  • Christiane Kuhl
  • Götz Lutterbey
  • Marcus von Falkenhausen
  • Frank Träber
  • Tjoung-Won Park-Simon
  • Oliver Zivanovic
  • Hans H. Schild
Urogenital

Abstract

Objective

The higher signal at 3.0-T allows spatial resolution to be increased without loss in image quality. We evaluated a T2-weighted turbo spin-echo sequence with high spatial resolution (3T-HR) to determine whether this provides clinically useful pelvic MRI.

Materials and methods

We designed a sequence with high spatial resolution (3T-HR) (0.45×0.46×4 mm) that was combined with parallel imaging and the variable refocusing angle technique (8.06 min). We examined 23 patients with gynecological disorders using 3T-HR and a standard sequence (3T-SP; 4.03 min; equivalent to 1.5 T). Two radiologists analyzed tissue contrast, signal to noise, detail delineation and artifact level.

Results

Tissue contrasts and signal to noise were rated equal. Motion artifacts occurred more often with 3T-SP despite the longer scanning time of 3T-HR. The higher spatial resolution provided additional information in four patients. In two patients small myomas were detected, in one patient a lymph node metastasis was apparent, and in one patient 3T-HR excluded tumor invasion.

Conclusions

High spatial resolution pelvic studies with high image quality can be obtained at 3 T in acceptable scan time. The higher spatial resolution that is feasible at 3 T also provides more clinically relevant information.

Keywords

High-field magnetic resonance imaging Spatial resolution Parallel imaging Variable refocusing angle Specific absorption rate reduction 

References

  1. 1.
    Willinek WA, Gieseke J, von Falkenhausen M, Born M, Hadizadeh D, Manka C, Textor HJ, Schild HH, Kuhl CK (2004) Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:21–26CrossRefPubMedGoogle Scholar
  2. 2.
    Scarabino T, Nemore F, Giannatempo GM, Bertolino A, Di Salle F, Salvolini U (2003) 3.0 T magnetic resonance in neuroradiology. Eur J Radiol 48:154–164CrossRefPubMedGoogle Scholar
  3. 3.
    Berg A, Singer T, Moser E (2003) High-resolution diffusivity imaging at 3.0 T for the detection of degenerative changes: a trypsin-based arthritis model. Invest Radiol 38:460–466CrossRefPubMedGoogle Scholar
  4. 4.
    Chen W, Ugurbil K (1999) High spatial resolution functional magnetic resonance imaging at very-high-magnetic field. Top Magn Reson Imaging 10:63–78PubMedCrossRefGoogle Scholar
  5. 5.
    Yoneka Y, Kwee IL, Fujii Y, Nakada T (2002) Criteria for normal cavities observed within the adult hippocampus: high resolution magnetic resonance imaging study on a 3.0 T-system. J Neuroimaging 12:231–235PubMedCrossRefGoogle Scholar
  6. 6.
    Lutterbey G, Gieseke J, von Falkenhausen M, Morakkabati N, Schild H (2005) Lung MRI at 3.0 tesla: a comparison of helical CT and high field MRI in the detection of lund disease. Eur Radiol 15:324–328CrossRefPubMedGoogle Scholar
  7. 7.
    Greenman RL, Shirosky JE, Mulkern RV, Rofsky NM (2003) Double inversion black-blood fast spin-echo imaging of the human heart: a comparison between 1.5 T and 3.0 T. J Magn Reson Imaging 17:648–655PubMedCrossRefGoogle Scholar
  8. 8.
    Stuber M, Botnar RF, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3.0 T in humans. Magn Reson Med 48:425–429PubMedCrossRefGoogle Scholar
  9. 9.
    Peterson DM, Carruthers CE, Wolverton BL et al (1999) Application of a bird-cage coil at 3 tesla to imaging of the human knee using MRI. Magn Reson Med 42:215–221PubMedCrossRefGoogle Scholar
  10. 10.
    Fischbach F, Thormann M, Ricke J (2004) 1H magnetic resonance spectroscopy (MRS) of the liver and hepatic malignant tumors at 3.0 tesla. Radiologe 44:1192–1196PubMedCrossRefGoogle Scholar
  11. 11.
    Futterer JJ, Scheenen TW, Huisman HJ, Klomp DW, van Dorsten FA, Hulsbergen-van de Kaa CA, Witjes JA, Heerschap A, Barentsz JO (2004) Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest Radiol 39:671–680PubMedCrossRefGoogle Scholar
  12. 12.
    Sosna J, Pedrosa I, Dewolf WC, Mahallati H, Lenkinski RE, Rofsky NM (2004) MR imaging of the prostate at 3 tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 tesla. Acad Radiol 11:857–862PubMedCrossRefGoogle Scholar
  13. 13.
    Bloch BN, Rofsky NM, Baroni RH, Marquis RP, Pedrosa I, Lenkinski RE (2004) 3 tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; initial experience (1). Acad Radiol 11:863–867PubMedGoogle Scholar
  14. 14.
    Morakkabati-Spitz N, Gieseke J, Kuhl C, Lutterbey G, von Falkenhausen M, Traeber F, Zivanovic O, Schild HH (2005) 3.0-T high-field magnetic resonance imaging of the female pelvis: preliminary experiences. Eur Radiol 15:639–644PubMedCrossRefGoogle Scholar
  15. 15.
    Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15:946–959CrossRefPubMedGoogle Scholar
  16. 16.
    Femlee JP, MA Bernstein MA, Huston J (2000) Analysis of RF heating at 3.0 T. ISMRM, p 2002Google Scholar
  17. 17.
    Lin C, Bernstein M, Huston J, Fain S (2001) In-vivo and in-vitro measurements of T1 relaxation at 3.0 T. In: Proceedings of the 9th Meeting ISMRM, p 1391Google Scholar
  18. 18.
    Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in human brain at 3.0 T. J Magn Reson Imaging 9:531–538CrossRefPubMedGoogle Scholar
  19. 19.
    Al Kwifi O, Emery DJ, Wilman AH (2002) Vessel contrast at three tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging 20:181–187PubMedCrossRefGoogle Scholar
  20. 20.
    Thomas SD, Al Kwifi O, Emery DJ, Wilman AH (2002) Application of magnetization transfer at 3.0 T in three-dimensional time-of-flight magnetic resonance angiography of the intracranial arteries. J Magn Reson Imaging 15:479–483CrossRefPubMedGoogle Scholar
  21. 21.
    von Falkenhausen M, Gieseke J, Morakkabati N, Lutterbey G, Blömer R, Kuhl CK, Schild HH (2004) 3T MRI of the liver after SPIO application. A comparison to 1.5T. Proc Int Soc Magn Reson Med 11:904Google Scholar
  22. 22.
    Hennig J, Scheffler K (2001) Hyperechos. Magn Reson Med 46:6–12PubMedCrossRefGoogle Scholar
  23. 23.
    Hennig J, Weigel M, Scheffler K (2003) Multi echo sequences with variable refocussing flip angles: optimization of signal behaviour using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49:527–535CrossRefPubMedGoogle Scholar
  24. 24.
    Gieseke J, Wattjes M, Lutterbey G, von Falkenhausen M, Blömer R Gür-O, Manka C, Schild H Kuhl CK (2004) Ultra fast T2-weighted TSE sequences using flip angle sweep with half-fourier and SENSE at 3T. Neuroradiology 46(Suppl 1):122PubMedGoogle Scholar
  25. 25.
    Gieseke J, Kuhl CK, von Falkenhausen M, Blömer R, Gür O, van Yperen G, Schild HH, Lutterbey G (2004) Ultra fast T2-weighted TSE sequences with flip angle sweep and SENSE at 3T. Proc Int Soc Magn Reson Med 11:74Google Scholar
  26. 26.
    Sheu MH, Chang CY, Wang JH, Yen MS (2001) Preoperative staging of cervical carcinoma with MR imaging: a reappraisal of diagnostic accuracy and pitfalls. Eur Radiol 11:1828–1833CrossRefPubMedGoogle Scholar
  27. 27.
    Sironi S, Belloni C, Taccagni GL et al (1991) Carcinoma of the cervix: value of MR imaging in detecting parametrial involvement. AJR Am J Roentgenol 156:753–756PubMedGoogle Scholar
  28. 28.
    Togashi K, Nishimura K, Sagoh T et al (1989) Carcinoma of the cervix: staging with MR imaging. Radiology 171:245–251PubMedGoogle Scholar
  29. 29.
    Okamoto Y, Tanaka YO, Nishida M, Tsunoda H, Yoshikawa H, Itai Y (2003) MR imaging of the uterine cervix: imaging-pathologic correlation. Radiographics 425–45:534–535Google Scholar
  30. 30.
    Gieseke J, Morakkabati-Spitz N, Kuhl CK, Lutterbey G, von-Falkenhausen M, Schild HH (2004) SAR-Reduktion mit variabler HF-Refokussierung und paralleler Bildgebung bei 3T: Neue Technik ermöglicht hohe räumliche Auflösung des weiblichen Beckens in akzeptabler Messzeit. Fortschr Roentgenstr 176(Suppl 222)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Nuschin Morakkabati-Spitz
    • 1
  • Jürgen Gieseke
    • 1
    • 2
  • Christiane Kuhl
    • 1
  • Götz Lutterbey
    • 1
  • Marcus von Falkenhausen
    • 1
  • Frank Träber
    • 1
  • Tjoung-Won Park-Simon
    • 3
  • Oliver Zivanovic
    • 3
  • Hans H. Schild
    • 1
  1. 1.Department of RadiologyUniversity of BonnBonnGermany
  2. 2.Philips Medical SystemsBestThe Netherlands
  3. 3.Department of Gynecology and ObstetricsUniversity of BonnBonnGermany

Personalised recommendations