European Radiology

, Volume 14, Issue 1, pp 59–72

Perfusion-weighted magnetic resonance imaging of the brain: techniques and application in children

  • Thierry A. G. M. Huisman
  • A. Gregory Sorensen


Perfusion-weighted magnetic resonance imaging (PWI) has been proposed as an attractive non-invasive tool for evaluating cerebral haemodynamics. Quantitative maps of cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP) and various other haemodynamic parameters can be obtained. Recent advances in hard- and software made PWI available for clinical routine. Although PWI became common in adult neuroradiology, it remains challenging in pediatric neuroradiology. In this article, the different PWI techniques that render haemodynamic maps of the brain are presented and discussed. The normal developmental changes of the cerebral haemodynamics in children as measured by PWI are presented as well as the application of PWI in cerebral ischaemia, primary and secondary cerebral vasculopathies and in cerebral tumours.


Perfusion-weighted imaging Dynamic susceptibility contrast imaging Haemodynamic parameter Children 


  1. 1.
    Roy CS, Sherrington CS (1890) J Physiol (Lond) 11:85–108Google Scholar
  2. 2.
    Grubb RL Jr, Raichle ME, Eichling JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5:630–639PubMedGoogle Scholar
  3. 3.
    Powers WJ (1991) Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 29:231–240PubMedGoogle Scholar
  4. 4.
    Powers WJ, Grubb RL, Raichle ME (1984) Physiological responses to focal cerebral ischemia in humans. Ann Neurol 16:546–552PubMedGoogle Scholar
  5. 5.
    Zaharchuk G, Mandeville JB, Bogdonov AA Jr, Weissleder R, Rosen BR, Marota JJ (1999) Cerebrovascular dynamics of autoregulation and hypoperfusion: an MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension. Stroke 30:2197–2203PubMedGoogle Scholar
  6. 6.
    Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weiskoff RM, Koroshetz WJ (1999) Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 210:519–527PubMedGoogle Scholar
  7. 7.
    Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, Vevea JM, Cohen MS, Pykett IL, Brady TJ (1990) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14:538–546PubMedGoogle Scholar
  8. 8.
    Rosen BR, Belliveau JW, Buchbinder BR, McKinstry RC, Porkka LM, Kennedy DN, Neuder MS, Fisel CR, Aronen HJ, Kwong KK, Brady TJ (1991) Contrast agents and cerebral hemodynamics. Magn Reson Med 19:285–292PubMedGoogle Scholar
  9. 9.
    Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265PubMedGoogle Scholar
  10. 10.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedGoogle Scholar
  11. 11.
    Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566PubMedGoogle Scholar
  12. 12.
    Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174PubMedGoogle Scholar
  13. 13.
    Stewart GN (1893) Research on the circulation time in organs and on the influences which affect it. J Physiol 15:1–89Google Scholar
  14. 14.
    Meier P, Zierler KL (1954) On theory of indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744Google Scholar
  15. 15.
    Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610PubMedGoogle Scholar
  16. 16.
    Boxerman JL, Rosen BR, Weisskoff RM (1997) Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 7:528–537PubMedGoogle Scholar
  17. 17.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedGoogle Scholar
  18. 18.
    Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78PubMedGoogle Scholar
  19. 19.
    Lev MH, Kulke SF, Sorensen AG, Boxerman JL, Brady TJ, Rosen BR, Buchbinder BR, Weisskoff RM (1997) Contrast-to-noise ratio in functional MRI of relative cerebral blood volume with sprodiamide injection. J Magn Reson Imaging 7:523–527PubMedGoogle Scholar
  20. 20.
    Perthen JE, Calamante F, Gadian DG, Connelly A (2002) Is quantification of bolus tracking MRI reliable without deconvolution? Magn Reson Med 47:61–67Google Scholar
  21. 21.
    Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, imitations, and potential implications for clinical use. Stroke 33:1146–1151CrossRefPubMedGoogle Scholar
  22. 22.
    Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion Imaging. Magn Reson Med 23:37–45PubMedGoogle Scholar
  23. 23.
    Detre JA, Alsop DC, Vives LR, Maccotta L, Teener JW, Raps EC (1998) Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology 50:633–641PubMedGoogle Scholar
  24. 24.
    Born AP, Rostrup E, Miranda MJ, Larsson HBW, Lou HC (2002) Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR). Magn Reson Imaging 20:199–205CrossRefPubMedGoogle Scholar
  25. 25.
    Ball WS Jr, Holland SK (2001) Perfusion imaging in the pediatric patient. Magn Reson Imaging Clin N Am 9:207–230PubMedGoogle Scholar
  26. 26.
    Tokumaru AM, Barkovich AJ, O'uchi T, Matsuo T, Kusano S (1999) The evolution of cerebral blood flow in the developing brain: evaluation with iodine-123 iodoamphetamine SPECT and correlation with MR imaging. Am J Neuroradiol 20:845–852PubMedGoogle Scholar
  27. 27.
    Takahashi T, Shirane R, Sato S, Yoshimoto T (1999) Developmental changes of cerebral blood flow and oxygen metabolism in children. Am J Neuroradiol 20:917–922PubMedGoogle Scholar
  28. 28.
    Monakow C von (1900) Uber die projektions und die assoziationszentren im grosshirn. Monatsschr Psychiatrie 8:405–420Google Scholar
  29. 29.
    Craigie EH (1924) Changes in the vascularity in the brain stem and cerebellum of the albino rat between birth and maturity. J Comp Neurol 38:27–48Google Scholar
  30. 30.
    Kennedy C, Grave GD, Jehle JW, Sokoloff L (1970) Blood flow to white matter during maturation of the brain. Neurology 20:613–618PubMedGoogle Scholar
  31. 31.
    Kennedy C, Grave GD, Jehle JW, Sokoloff L (1972) Changes in blood flow in the component structures of the dog brain during postnatal maturation. J Neurochem 19:2423–2433PubMedGoogle Scholar
  32. 32.
    Gonzalez RG, Schaefer PW, Buonanno FS, Shwamm LH, Budzik RF, Rordorf G, Wang B, Sorensen AG, Koroshetz WJ (1999) Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 210:155–162PubMedGoogle Scholar
  33. 33.
    Kaufmann AM, Firlik AD, Fukui MB, Wechsler LR, Jungries CA, Yonas H (1999) Ischemic core and penumbra in human stroke. Stroke 30:93–99PubMedGoogle Scholar
  34. 34.
    Schlaug G, Benfield A, Baird AE, Siewert B, Lovblad KO, Parker RA, Edelman RR, Warach S (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53:1528–1537PubMedGoogle Scholar
  35. 35.
    Davis R, Bulkley G, Traystman R (1988) Role of oxygen free radicals in focal brain ischemia. In: Tomita M, Sawada T, Naritomi H, Weiss W-D (eds) Cerebral hyperemia and ischemia: from the standpoint of cerebral blood volume. Excerpta Medica, Amsterdam, pp 151–156Google Scholar
  36. 36.
    Keller E, Flacke S, Urbach H, Schild HH (1999) Diffusion- and perfusion-weighted magnetic resonance imaging in deep cerebral venous thrombosis. Stroke 30:1144–1146PubMedGoogle Scholar
  37. 37.
    Tzika AA, Robertson RL, Barnes PD, Vajapeyam S, Burrows PE, Treves ST, Scott RM (1997) Childhood Moyamoya disease: hemodynamic MRI. Pediatr Radiol 27:727–735CrossRefPubMedGoogle Scholar
  38. 38.
    Tsuchiya K, Inaoka S, Mitzutani Y, Hachiya J (1998) Echo-planar perfusion MR of Moyamoya disease. Am J Neuroradiol 19:211–216PubMedGoogle Scholar
  39. 39.
    Calamante F, Ganesan V, Kirkham FJ, Jan W, Chong WK, Gadian DG, Connelly A (2001) MR perfusion imaging in Moyamoya syndrome: potential implications for clinical evaluation of occlusive cerebrovascular disease. Stroke 32:2810–2816PubMedGoogle Scholar
  40. 40.
    Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, Harsh GR, Cosgrove GR, Halpern EF, Hochberg FH, Rosen BR (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51PubMedGoogle Scholar
  41. 41.
    Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, Miller DC, Kelly PJ, Kricheff II (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798PubMedGoogle Scholar
  42. 42.
    Taylor JS, Tofts PS, Port R, Evelhoch JL, Knopp M, Reddick WE, Runge VM, Mayr N (1999) MR imaging of tumor microcirculation: promise for the new millenium. J Magn Reson Imaging 10:903–907CrossRefPubMedGoogle Scholar
  43. 43.
    Aronen HJ, Glass J, Pardo FS, Belliveau JW, Gruber ML, Buchbinder BR, Gazit IE, Linggood RM, Fischman AJ, Rosen BR (1995) Echo-planar MR cerebral blood volume mapping of gliomas. Clinical utility. Acta Radiol 36:520–528PubMedGoogle Scholar
  44. 44.
    Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641PubMedGoogle Scholar
  45. 45.
    Sorensen AG, Rosen BR (1996) Functional MRI of the brain. In: Atlas-Scott W (ed) Magnetic resonance imaging of the brain and spine. Lippincott-Raven, Philadelphia, pp 1501–1545Google Scholar
  46. 46.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedGoogle Scholar
  47. 47.
    Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447PubMedGoogle Scholar
  48. 48.
    Wesseling P, van der Laak JA, Link M, Teepen HL, Ruiter DJ (1998) Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Human Pathol 29:352–358Google Scholar
  49. 49.
    Zama A, Tamura M, Inoue HK (1991) Three-dimensional observations on microvascular growth in rat glioma using a vascular casting method. J Cancer Res Clin Oncol 117:396–402PubMedGoogle Scholar
  50. 50.
    Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610PubMedGoogle Scholar
  51. 51.
    Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40:793–799PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Thierry A. G. M. Huisman
    • 1
    • 2
  • A. Gregory Sorensen
    • 1
  1. 1.Department of Radiology, Neuroradiology Section and MGH-NMR CenterMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Department of RadiologyUniversity Children's Hospital ZurichZurichSwitzerland

Personalised recommendations