European Radiology

, Volume 13, Issue 8, pp 1979–1991

Radiation exposure in multi-slice versus single-slice spiral CT: results of a nationwide survey

  • G. Brix
  • H. D. Nagel
  • G. Stamm
  • R. Veit
  • U. Lechel
  • J. Griebel
  • M. Galanski
Physics

Abstract

Multi-slice (MS) technology increases the efficacy of CT procedures and offers new promising applications. The expanding use of MSCT, however, may result in an increase in both frequency of procedures and levels of patient exposure. It was, therefore, the aim of this study to gain an overview of MSCT examinations conducted in Germany in 2001. All MSCT facilities were requested to provide information about 14 standard examinations with respect to scan parameters and frequency. Based on this data, dosimetric quantities were estimated using an experimentally validated formalism. Results are compared with those of a previous survey for single-slice (SS) spiral CT scanners. According to the data provided for 39 dual- and 73 quad-slice systems, the average annual number of patients examined at MSCT is markedly higher than that examined at SSCT scanners (5500 vs 3500). The average effective dose to patients was changed from 7.4 mSv at single-slice to 5.5 mSv and 8.1 mSv at dual- and quad-slice scanners, respectively. There is a considerable potential for dose reduction at quad-slice systems by an optimisation of scan protocols and better education of the personnel. To avoid an increase in the collective effective dose from CT procedures, a clear medical justification is required in each case.

Keywords

Multi-slice spiral CT Frequency of procedures Radiation exposure Nationwide survey Recommendations for dose reduction 

References

  1. 1.
    Kalender WA, Seissler W, Klotz E, Vock O (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and scanner rotation. Radiology 176:181–183PubMedGoogle Scholar
  2. 2.
    Liang Y, Kruger RA (1996) Dual-slice spiral versus single-slice spiral scanning: comparison of the physical performance of two computed tomography scanners. Med Phys 23:205–220PubMedGoogle Scholar
  3. 3.
    Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U (1999) Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 31:110–124PubMedGoogle Scholar
  4. 4.
    Fuchs TO, Kachelriess M, Kalender WA (2000) System performance of multislice spiral computed tomography. IEEE Eng Med Biol Mag 19:63–70Google Scholar
  5. 5.
    Fuchs T, Kachelriess M, Kalender WA (2000) Technical advances in multi-slice spiral CT. Eur J Radiol 36:69–73PubMedGoogle Scholar
  6. 6.
    Rubin GD (2000) Data explosion: the challenge of multidetector-row CT. Eur J Radiol 36:74–80PubMedGoogle Scholar
  7. 7.
    Dawson P, Lees WR (2001) Multi-slice technology in computed tomography. Clin Radiol 56:302–309PubMedGoogle Scholar
  8. 8.
    Rydberg J, Buckalter KA, Caldemeyer KS, Phillips MD, Conces DJ, Aisen AM, Persohn SA, Kopecky KK (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20:1787–1806PubMedGoogle Scholar
  9. 9.
    Berland LL, Smith JK (1998) Multidetector-array CT: once again, technology creates new opportunities. Radiology 209:327–329Google Scholar
  10. 10.
    Kopecky KK, Buckwalter KA, Sokiranski R (1999) Multi-slice CT: spirals past single-slice CT in diagnostic efficacy. Diagn Imaging 21:36–42Google Scholar
  11. 11.
    Knez A, Becker CR, Leber A, Ohnesorge B, Becker A, White C, Haberl R, Reiser MF, Steinbeck G (2001) Usefulness of multislice spiral computed tomography angiography for determination of coronary artery stenoses. Am J Cardiol 88:1191–1194PubMedGoogle Scholar
  12. 12.
    Nieman K, Rensing BJ, van Geuns RJ, Munne A, Ligthart JM, Pattynama PM, Krestin GP, Serruys PW, de Feyter PJ (2002) Usefulness of multislice computed tomography for detecting obstructive coronary artery disease. Am J Cardiol 89:913–918CrossRefPubMedGoogle Scholar
  13. 13.
    Schroeder S, Kopp AF, Ohnesorge B, Loke-Gie H, Kuettner A, Baumbach A, Herdeg C, Claussen CD, Karsch KR (2002) Virtual coronary angioscopy using multislice computed tomography. Heart 87:205–209PubMedGoogle Scholar
  14. 14.
    Gerber TC, Kuzo RS, Karstaedt N, Lane GE, Morin RL, Sheedy PF, Safford RE, Blackshear JL, Pietan JH (2002) Current results and new developments of coronary angiography with use of contrast-enhanced computed tomography of the heart. Mayo Clin Proc 77:55–71PubMedGoogle Scholar
  15. 15.
    Hong C, Becker CR, Schoepf UJ, Ohnesorge B, Bruening R, Reiser MF (2002) Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced multi-detector row CT studies. Radiology 223:474–480PubMedGoogle Scholar
  16. 16.
    Bruzzi JF, Moss AC, Fenlon HM (2001) Clinical results of virtual colonoscopy. Eur Radiol 11:2188–2194PubMedGoogle Scholar
  17. 17.
    Luboldt W, Fletcher JG, Vogl TJ (2002) Colonography: current status, research directions and challenges. Update 2002. Eur Radiol 12:502–524PubMedGoogle Scholar
  18. 18.
    UNSCEAR (2000) 2000 report, vol I. Sources and effects of ionizing radiation. Annex D: Medical radiation exposures. United Nations Sales PublicationsGoogle Scholar
  19. 19.
    Bundesamt für Strahlenschutz. Jahresbericht 2000. http://www.bfs.deGoogle Scholar
  20. 20.
    European Commission (1999) Report EUR 16262 EN: European guidelines on quality criteria for computed tomographyGoogle Scholar
  21. 21.
    Seifert H, Hagen T, Bartylla K, Blass G, Piepgras U (1997) Patient doses from standard and spiral CT of the head using a fast twin-beam system. Br J Radiol 70:1139–1145PubMedGoogle Scholar
  22. 22.
    Giacomuzzi SM, Torbica P, Rieger M, Lottersberger C, Peer S, Peer R, Perkmann R, Buchberger W, Bale R, Mallouhi A, Jaschke W (2001) Evaluation of radiation exposure with single-slice and a multi-slice CT system (a phantom study). Fortschr Rontgenstr 173:643–649Google Scholar
  23. 23.
    Moro L, Bolsi A, Baldi M, Bertoli G, Fantinato D (2001) Single-slice and multi-slice computerized tomography: dosimetric comparison with diagnostic reference levels. Radiol Med 102:262–265Google Scholar
  24. 24.
    Galanski M, Nagel HD, Stamm G (2001) CT-Expositionspraxis in der Bundesrepublik Deutschland. Fortschr Rontgenstr 173:R1–R66Google Scholar
  25. 25.
    Nagel HD, Galanski M, Hidajat N, Maier W, Schmidt T (2000) Radiation exposure in computed tomography: fundamentals, influencing parameters, dose assessment, optimisation, scanner data, terminology. COCIR, FrankfurtGoogle Scholar
  26. 26.
    Stamm G, Nagel HD (2002) CT-Expo: ein neuartiges Programm zur Dosisevaluierung in der CT. Fortschr Rontgenstr 174:1570–1576Google Scholar
  27. 27.
    ICRP Publication 60 (1991) 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 21/1–3. Elsevier, OxfordGoogle Scholar
  28. 28.
    Zankl M, Panzer W, Drexler G (1991) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part IV. Organ doses from tomographic examinations. GSF report 30/91, NeuherbergGoogle Scholar
  29. 29.
    Kramer R, Zankl M, Wiliams G, Drexler G (1982) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part I. The male (Adam) and female (Eva) adult mathematical phantoms. GSF report S-885, NeuherbergGoogle Scholar
  30. 30.
    Shrimpton PC, Jones DG, Hillier MC, Wall BF, Leheron JC, Faulkner K (1991) Survey of CT practice in the UK. Part 2. Dosimetric aspects. NRPB-249, HMSO, 48, LondonGoogle Scholar
  31. 31.
    European Commission (2000) Report EUR 19604 EN: Recommendations for patient dosimetry in diagnostic radiology using TLDGoogle Scholar
  32. 32.
    Huda W, Sandison GA (1984) Estimation of mean organ doses in diagnostic radiology from Rando phantom measurements. Health Phys 47:463–467PubMedGoogle Scholar
  33. 33.
    Bushberg JT, Seibert JA, Leidholdt EM, Boone JM (2002) The essential physics of medical imaging, 2nd edn. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  34. 34.
    Kopp AF, Heuschmid M, Claussen CD (2002) Multidetector helical CT of the liver for tumor detection and characterization. Eur Radiol 12:745–752CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • G. Brix
    • 1
    • 6
  • H. D. Nagel
    • 2
    • 3
  • G. Stamm
    • 4
  • R. Veit
    • 1
  • U. Lechel
    • 1
  • J. Griebel
    • 1
  • M. Galanski
    • 4
    • 5
  1. 1.Division of Medical Radiation Hygiene and Dosimetry, Institute of Radiation HygieneFederal Office for Radiation ProtectionNeuherbergGermany
  2. 2.Department of Science and TechnologyPhilips Medical SystemsHamburgGermany
  3. 3.Manufacturers' Association of Electromedical Equipment (ZVEI)FrankfurtGermany
  4. 4.Department of RadiologyHannover Medical SchoolHannoverGermany
  5. 5.Quality Assurance CommitteeGerman Roentgen SocietyGermany
  6. 6.Institut für StrahlenhygieneBundesamt für Strahlenschutz (BfS)OberschleissheimGermany

Personalised recommendations