European Radiology

, Volume 13, Issue 7, pp 1699–1708 | Cite as

Diffusion-weighted imaging of bone marrow: current status

  • Andrea Baur
  • Olaf Dietrich
  • Maximilian Reiser


Diffusion-weighted imaging allows for measurement of tissue microstructure and reflects the random motion of water protons. It provides a new method to study bone marrow and bone marrow alterations on the basis of altered water-proton mobility in various diseases. Different diffusion-weighted methods have proved to be capable of differentiating between benign edema and tumorous involvement of bone marrow. It is especially useful for the distinction of acute benign osteoporotic and malignant vertebral compression fractures. Diagnosis is based on the contrast to normal bone marrow. Hypo- or isointensity reflects acute benign collapse, whereas hyperintensity is indicative of the tumorous nature of a fracture. Apparent diffusion coefficients (ADC) are significantly lower in metastatic disease than in bone marrow edema. Furthermore, bone marrow cellularity can be estimated by ADC measurements. Diffusion-weighted imaging might be helpful for monitoring response to therapy in metastatic disease.


MRI Diffusion-weighted imaging Bone marrow Neoplasms 


  1. 1.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407CrossRefGoogle Scholar
  2. 2.
    Lee LJ, Kidwell CS, Alger J, Starkman S, Saver JL (2000) Impact on stroke subtype diagnosis of early diffusion-weighted magnetic resonance imaging and magnetic resonance angiography. Stroke 31:1081–1089CrossRefPubMedGoogle Scholar
  3. 3.
    Chien D, Kwong KK, Gress DR, Buonanno FS, Buxton RB, Rosen BR (1992) MR diffusion imaging of cerebral infarction in humans. Am J Neuroradiol 13:1097–1102PubMedGoogle Scholar
  4. 4.
    Kim YJ, Chang KH, Song IC (1998) Brain abscess and necrotic or cystic brain tumor: discrimination with signal intensity on diffusion-weighted MR imaging. Am J Roentgenol 171:1487–1490CrossRefGoogle Scholar
  5. 5.
    Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotropy in acute and chronic multiple sclerosis lesions. Am J Neuroradiol 20:1491–1499PubMedGoogle Scholar
  6. 6.
    Tsuruda JS, Chew WM, Moseley ME, Norman D (1990) Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. Am J Neuroradiol 11:925–931PubMedGoogle Scholar
  7. 7.
    Namimoto T, Yamashita Y, Sumi S, Tang Y, Takahashi M (1997) Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology 204:739–744CrossRefPubMedGoogle Scholar
  8. 8.
    Moteki T, Ishizaka H (1999) Evaluation of cystic ovarian lesions using apparent diffusion coefficient calculated from reordered turboFLASH MR images. Magn Reson Imaging 17:955–963CrossRefPubMedGoogle Scholar
  9. 9.
    Ahvenjärvi L, Jauhiainen J, Oikarinen J, Tervonen O (2000) Exercise induced signal intensity and ADC changes in skeletal muscle. In: Book of abstracts. Society of Magnetic Resonance in Medicine, Colorado, p 756Google Scholar
  10. 10.
    Blanco R, Ahvenjärvi L, Jauhiainen J, Oikarinen J, Siniluoto T, Tervonen O (1999) Diffusion imaging in vivo in skeletal muscle tissue and correlation to the arteriosclerosis of the lower extremities. Proc Int Soc Magn Reson Med, p 1784Google Scholar
  11. 11.
    Knauss R, Schiller J, Fleischer J, Kärger J, Arnold K (1999) Self-diffusion of water in cartilage and cartilage components as studied by pulsed field gradient NMR. Magn Reson Med 41:285–292CrossRefPubMedGoogle Scholar
  12. 12.
    Baur A, Huber A, Arbogast S, Dürr HR, Zysk SP, Wendtner C, Deimling M, Reiser M (2001) Diffusion-weighted imaging of tumor recurrencies and posttherapeutic soft-tissue changes in humans. Eur Radiol 11:828–833CrossRefPubMedGoogle Scholar
  13. 13.
    Lang P, Wendland MF, Saeed M, Gindele A, Rosenau W, Mathur A, Gooding CA, Genant HK (1998) Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology 206:227–235CrossRefPubMedGoogle Scholar
  14. 14.
    Eustace S, Masi M di, Adams J, Ward R, Caruthers S, McAlindon T (2000) In vitro and in vivo spin echo diffusion imaging characteristics of synovial fluid: potential non-invasive differentiation of inflammatory and degenerative arthritis. Skeletal Radiol 29:320–323CrossRefPubMedGoogle Scholar
  15. 15.
    Baur A, Stäbler A, Brüning R, Bartl R, Krödel A, Deimling M, Reiser M (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic vertebral compression fractures. Radiology 207:349–356CrossRefPubMedGoogle Scholar
  16. 16.
    Baur A, Huber A, Ertl-Wagner B, Dürr HR, Zysk S, Arbogast S, Deimling M, Reiser M (2001) Diagnostic value of increased diffusion-weighting of a steady-state free precession sequence for the differentiation of acute benign osteoporotic versus pathologic vertebral compression fractures. Am J Neuroradiol 22:366–372PubMedGoogle Scholar
  17. 17.
    Baur A, Huber A, Dürr HR, Nikolaou K, Stäbler A, Deimling M, Reiser M (2002) Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence. Fortschr Röntgenstr 174:70–75Google Scholar
  18. 18.
    Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ (2002) Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. Am J Neuroradiol 23:165–170PubMedGoogle Scholar
  19. 19.
    Chan JH, Peh WC, Tsui EY, Chau LF, Cheung KK, Chan KB, Yuen MK, Wong ET, Wong KP (2002) Acute vertbral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 75:207–214CrossRefPubMedGoogle Scholar
  20. 20.
    Herneth AM, Philipp MO, Naude J, Funovics M, Beichel RR, Bammer R, Imhof H (2002) Verterbral metastases: assessment with apparent diffusion coefficient. Radiology 225:889–894CrossRefPubMedGoogle Scholar
  21. 21.
    Spüntrup E, Buecker A, Adam G, van Vaals J, Günther RW (2001) Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. Am J Roentgenol 176:351–358CrossRefGoogle Scholar
  22. 22.
    Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  23. 23.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Chiro G di (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648CrossRefPubMedGoogle Scholar
  24. 24.
    Merboldt KD, Hänicke W, Frahm J (1991) Diffusion imaging using stimulated echoes. Magn Reson Med 19:233–239CrossRefPubMedGoogle Scholar
  25. 25.
    Ordidge RJ, Helpern JA, Qing ZX, Knight RA, Nagesh V (1994) Correction of motional artifacts in diffusion-weighted MR images using navigator echoes. Magn Reson Imaging 12:455–460CrossRefPubMedGoogle Scholar
  26. 26.
    Anderson AW, Gore JC (1994) Analysis and correction of motion artifacts in diffusion weighted imaging. Magn Reson Med 32:379–387CrossRefPubMedGoogle Scholar
  27. 27.
    Gmitro AF, Alexander AL (1993) Use of a projection reconstruction method to decrease motion sensitivity in diffusion-weighted MRI. Magn Reson Med 29:835–838CrossRefPubMedGoogle Scholar
  28. 28.
    Dietrich O, Herlihy A, Dannels WR, Fiebach J, Heiland S, Hajnal JV, Sartor K (2001) Diffusion-weighted imaging of the spine using radial k-space trajectories. MAGMA 12:23–31PubMedGoogle Scholar
  29. 29.
    Chun T, Ulug AM, van Zijl PC (1998) Single-shot diffusion-weighted trace imaging on a clinical scanner. Magn Reson Med 40:622–628CrossRefPubMedGoogle Scholar
  30. 30.
    Norris DG, Börnert P, Reese T, Leibfritz D (1992) On the application of ultra-fast RARE experiments. Magn Reson Med 27:142–164CrossRefPubMedGoogle Scholar
  31. 31.
    Le Bihan D (1988) Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med 7:346–351CrossRefGoogle Scholar
  32. 32.
    Merboldt K, Hänicke W, Gyngell ML, Frahm J, Bruhn H (1989) Rapid NMR imaging of molecular self-diffusion using a modified CE-FAST sequence. J Magn Reson 82:115–121Google Scholar
  33. 33.
    Buxton RB (1993) The diffusion sensitivity of fast steady-state free precession imaging. Magn Reson Med 29:235–243CrossRefPubMedGoogle Scholar
  34. 34.
    Vande Berg BC, Malghem J, Lecouvet FE, Maldague B (1998) Magnetic resonance imaging of normal bone marrow. Eur Radiol 8:1327–1334CrossRefGoogle Scholar
  35. 35.
    Vanel D, Dromain C, Tardivon A (2000) MRI of bone marrow disorders. Eur Radiol 10:224–229CrossRefPubMedGoogle Scholar
  36. 36.
    Feydy A, Drape JL, Argaud C (2001) Diffusion-weighted MRI and ADC measurement of tumoral bone marrow. In: Proc Intl Soc Mag Reson Med 9:2117Google Scholar
  37. 37.
    Ward R, Caruthers S, Yablon C, Blake M, Masi M di, Eustace S (2000) Analysis of diffusion changes in posttraumatic bone marrow using navigator-corrected diffusion gradients. Am J Roentgenol 174:731–734CrossRefGoogle Scholar
  38. 38.
    Baur A, Staebler A, Arbogast S, Duerr HR, Bartl R, Reiser M (2002) Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 225:730–735CrossRefPubMedGoogle Scholar
  39. 39.
    Yuh WTC, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR (1989) Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology 172:215–218CrossRefPubMedGoogle Scholar
  40. 40.
    Baker LL, Goodman SB, Perkash I, Lane B, Enzmann DR (1990) Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical shift, and STIR MR imaging. Radiology 174:495–502CrossRefPubMedGoogle Scholar
  41. 41.
    Matoba M, Tonami H, Yokota H, Kuginuki Y, Yamamoto (1999) Role of diffusion-weighted MRI and P31-MRS in differentiating between malignant and benign vertebral compression fractures. Proc Int Soc Mag Reson Med:1038Google Scholar
  42. 42.
    Tasaly N, Ünlü E, Cokal N, Tatoolu H, Karakap HM, Cakyr B (2000) Can we differentiate benign versus malignant vertebral fractures with Diffusion-weighted MR imaging? Radiology (Suppl) 217:68Google Scholar
  43. 43.
    Nakagawa K, Sakuma H, Ichikawa Y, Kitagwa K, Kawada N, Kadoya I, Hirnao T, Matsumura K, Takeda K, Matsusaka JP, Tsu JP (2000) Vertebral compression fractures: differentiation between benign and malignant lesions with diffusion-weighted single-shot echo planar MR imaging. Book of abstracts. Society of Magnetic Resonance in Medicine, Colorado, p 2144Google Scholar
  44. 44.
    Castillo M, Arbelaez A, Smith K, Fisher LL (2000) Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. Am J Neuroradiol 21:948–953PubMedGoogle Scholar
  45. 45.
    Buyn WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J (2002) Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. Am J Neuroradiol 23:906–912Google Scholar
  46. 46.
    Buyn WM (2001) Diffusion-weighted MR imaging of vertebral bone marrow. Differentiation of degenerative spines and spondylitis involving bone marrow adjacent to end plates. Proc Int Soc Magn Reson Med 9:1626Google Scholar
  47. 47.
    Stäbler A, Baur A, Krüger A, Weiss M, Helmberger T, Reiser M (1998) Differential diagnosis of erosive osteochondrosis and bacterial spondylitis in MRI. Fortschr Röntgenstr 168:421–428Google Scholar
  48. 48.
    Nonomura Y, Yasumoto M, Yoshimura R, Haraguchi K, Ito S, Akashi T, Ohashi I (2001) Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 13:757–760CrossRefPubMedGoogle Scholar
  49. 49.
    Yasumoto M, Nonomura Y, Yoshimura R, Haraguchi K, Ito S, Ohashi I, Shibuya H (2002) MR detection of iliac bone marrow involvement by malignant lymphoma with various MR sequences including diffusion-weighted echo-planar imaging. Skeletal Radiol 31:263–269CrossRefPubMedGoogle Scholar
  50. 50.
    Ballon D, Dyke J, Schwartz LH, Lis E, Schneider E, Lauto A, Jakubowski AA (2001) Bone marrow segmentation in leukemia using diffusion and T2-weighted echo planar magnetic resonance imaging. NMR Biomed 13:321–328CrossRefGoogle Scholar
  51. 51.
    Le Bihan DJ (1998) Differentiation of benign versus pathologic compression fractures with diffusion-weighted MR imaging: a closer step toward the "holy grail of tissue characterization"? (editorial) Radiology 207:305–307Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Clinical RadiologyUniversity of MunichMunichGermany

Personalised recommendations