Polar Biology

, Volume 42, Issue 12, pp 2313–2318 | Cite as

Mass mortality event of White Sea sponges as the result of high temperature in summer 2018

  • Alexander EreskovskyEmail author
  • Dmitry A. Ozerov
  • Anatoly N. Pantyulin
  • Alexander B. Tzetlin
Short Note


Although Arctic communities are very sensitive to global warming, direct evidence of the effects of high temperature on bottom communities is quite rare. We observed a mass mortality event (MME) of sponges by SCUBA diving in July and August 2018 along the coasts of Kandalaksha Bay, White Sea, and sub-Arctic. This event severely affected sponges from hard-substratum communities in particular, the demosponges Isodyctia palmata and Halichondria sitiens. Constant and exceptionally high temperatures throughout the water column (average temperature differences of 6.5 °C in July and 5.6 °C in August 2018, relative to the average temperatures in previous years at a depth of 20 m) may have led to an environmental context favorable to the MME. As was observed for the thermal anomaly, mortality was limited at the depth below a thermocline. However, it is not possible to ascertain whether temperature had a direct effect on organisms or whether it acted in synergy with a latent and/or waterborne agent. However, viewed in the context of global warming, there is an urgent need to rapidly set up monitoring programs of physical–chemical parameters and vulnerable populations in benthic communities through the Arctic Basin.


Mass mortality Global warming Sponges White Sea 



This work was supported by grants of A*MIDEX, Grant/Award Number: ANR-11-LABX-0061; Excellence Initiative of Aix-Marseille University—A*MIDEX, Grant RFBR 18-05-60158, and Grant PRC CNRS/RFBR n° 1077. We thank the White Sea Biological Station of the Russian Academy of Sciences "Kartesh" for providing materials on the long-term monitoring of hydrology in the White Sea from program “White Sea Hydrology and Zooplankton Time Series: Kartesh D1.”

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest.

Supplementary material

300_2019_2606_MOESM1_ESM.tif (8.3 mb)
Supplementary file1 (TIFF 8543 kb). EMS 1. Map of the investigated site in Kandalaksha Bay of the White Sea. In red: the transects.
300_2019_2606_MOESM2_ESM.tif (509 kb)
Supplementary file2 (TIFF 510 kb). EMS 2. Temperature in the Velikaya Salma Strait: (a) –monthly averages temperature of the period from 2005 to 2016 (; (b) – temperature in the summer of 2018.


  1. Bobkov AA, Usov NV, Tsepelev VY (2005) Hydrometeorological factors influencing the formation of water temperature anomalies nearby the Kartesh Cap. Vestn SpBGU 7(2):114–118Google Scholar
  2. Cebrian E, Uriz MJ, Garrabou J, Ballesteros E (2011) Sponge mass mortalities in a warming Mediterranean sea: are cyanobacteria-harboring species worse off? PLoS ONE 6:e20211. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S et al (2000) Catastrophic mass-mortality episode of gorgonias and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol Lett 3:284–293. CrossRefGoogle Scholar
  4. Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. PNAS 106:6176–6181. CrossRefPubMedGoogle Scholar
  5. Cupido R, Cocito S, Barsanti M, Sgorbini S, Peirano A, Santangelo G (2009) Unexpected long-term population dynamics in a canopy-forming gorgonian coral following mass mortality. Mar Ecol Prog Ser 394:195–200. CrossRefGoogle Scholar
  6. Denisenko SG, Denisenko NV, Chaban EM, Gagaev SYu, Petryashov VV, Zhuravleva NE, Sukhotin AA (2019) The current status of the macrozoobenthos around the Atlantic walrus haulouts in the Pechora Sea (SE Barents Sea). Polar Biol 42:1703–1717. CrossRefGoogle Scholar
  7. Di Camillo CG, Bartolucci I, Cerrano C, Bavestrello G (2013) Sponge disease in the Adriatic sea. Mar Ecol 34:62–71. CrossRefGoogle Scholar
  8. Eiane K, Daase M (2002) Observations of mass mortality of Themisto libellula (Amphipoda, Hyperidae). Polar Biol 25:396–398. CrossRefGoogle Scholar
  9. Ereskovsky AV (1994) Materials to the faunistic study of the White Sea and Barents Sea sponges. 2. Biogeographical and comparative-faunistic analysis. Vestn Leningr Univ Ser Biol 1:13–26Google Scholar
  10. Ereskovsky AV (2010) Porifera. In: Tsetlin AB, Zhadan AE, Marfenin NN (eds) Illustrated Atlas of the flora and the fauna of White Sea. KMK Publication, Moscow, pp 157–173Google Scholar
  11. Fey SB, Siepielski AM, Nusslé S et al (2015) Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. PNAS 112:1083–1088. CrossRefPubMedGoogle Scholar
  12. Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Change 5:673–677. CrossRefGoogle Scholar
  13. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P et al (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biol 15:1090–1103. CrossRefGoogle Scholar
  14. Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. CrossRefPubMedGoogle Scholar
  15. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world‘s marine ecosystems. Science 328:1523–1528. CrossRefPubMedGoogle Scholar
  16. Howland RJM, Pantiulin AN, Millward GE, Prego R (1999) The Hydrography of the Chupa Estuary, White Sea, Russia. Estuar Coast Shelf Sci 48:1–12. CrossRefGoogle Scholar
  17. Jørgensen LL, Primicerio R, Ingvaldsen RB, Fossheim M, Strelkova N, Thangstad TH, Manushin I, Zakharov D (2019) Impact of multiple stressors on sea bed fauna in a warming Arctic. Mar Ecol Prog Ser 608:1–12. CrossRefGoogle Scholar
  18. Kortsch S, Primicerio R, Beuchel F, Renaud RE, Rodrigues J, Lønne OJ, Gulliksen B (2012) Climate-driven regime shifts in Arctic marine benthos. PNAS 109:14052–14057. CrossRefPubMedGoogle Scholar
  19. Kruzic P, Rodic P, Popijac A, Serti M (2016) Impacts of temperature anomalies on mortality of benthic organisms in the Adriatic Sea. Mar Ecol 37:1190–1209. CrossRefGoogle Scholar
  20. Langangen O, Ohlberger J, Stige LC, Durant JM, Ravagnan E, Stenseth NC, Hjermann DO (2017) Cascading effects of mass mortality events in Arctic marine communities. Global Change Biol 23:283–292. CrossRefGoogle Scholar
  21. Luter HM, Webster NS (2017) Sponge disease and climate change. In: Carballo JL, Bell JJ (eds) Climate change, ocean acidification and sponges. Springer, New York, pp 411–428CrossRefGoogle Scholar
  22. Mangel M, Tier C (1994) Four facts every conservation biologist should know about persistence. Ecology 75:607–614. CrossRefGoogle Scholar
  23. Naumov AD, Mokievskiy VO, Chava VA (2016) Tides in the Rugozerskaya Inlet and adjacent water-basins (White Sea, Kandalaksha Bay). Trudy White Sea Stn MSU 12:74–90Google Scholar
  24. Overland JE, Wang M (2013) When will the summer Arctic be nearly sea ice free? Geophys Res Lett 40:2097–2101. CrossRefGoogle Scholar
  25. Pantyulin AN (2003) Hydrological system of the White Sea. Oceanology 43:S1–S14Google Scholar
  26. Pérez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P et al (2000) Mortalité massive d’invertébrés marins: un évènement sans précédent en Méditerranée nord-occidentale. C R Acad Sci Paris 323:853–865. CrossRefPubMedGoogle Scholar
  27. Prada F, Caroselli E, Mengoli S, Brizi L, Fantazzini P, Capaccioni B, Pasquini L, Fabricius KE, Dubinsky Z, Falini G, Goffredo S (2016) Ocean warming and acidification synergistically increase coral mortality. Sci Rep 7:40842. CrossRefGoogle Scholar
  28. Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2005) Tissue necrosis and mortality of the temperate coral Cladocora caespitosa. Italian J Zool 72:271–276. CrossRefGoogle Scholar
  29. Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pages C (2006) Growth and photosynthesis of two Mediterranean corals, Cladocora caespitosa and Oculina patagonica, under normal and elevated temperatures. J Exp Biol 209:4546–4556. CrossRefPubMedGoogle Scholar
  30. Romano JC, Bensoussan N, Younes WAN, Arlhac D (2000) Anomalies thermiques dans les eaux du golfe de Marseille durant l’été 1999. Une explication partielle de la mortalité d’invertébrés fixés. C R Acad Sci Paris 323:415–427. CrossRefPubMedGoogle Scholar
  31. Smedsrud LH, Esau I, Ingvaldsen RB, Eldevik T, Haugan PM et al (2013) The role of the Barents Sea in the Arctic climate system. Rev Geophys 51:415–449. CrossRefGoogle Scholar
  32. Stokstad E (2014) Death of the stars. Science 344:464–467. CrossRefPubMedGoogle Scholar
  33. Vacelet J (1994) Control of the severe sponge epidemic: near East and Europe: Algeria, Cyprus, Egypt, Lebanon, Malta, Morocco, Syria, Tunisia, Turkey, Yugoslavia. In: Technical report: the struggle against the epidemic which is decimating Mediterranean sponges, FI:TCP/RAB/8853. Rome, pp 1–39.Google Scholar
  34. Wassmann P, Duarte CM, Agusti S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Global Change Biol 17:1235–1249. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille University, CNRS, IRD, Avignon Université, Station Marine D’EndoumeMarseilleFrance
  2. 2.Biological FacultySt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Koltzov Institute of Developmental Biology of Russian Academy of SciencesMoscowRussia
  4. 4.The White Sea Biological StationM.V. Lomonosov Moscow State UniversityMoscowRussia
  5. 5.Faculty of GeographyM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations