Advertisement

Polar Biology

, Volume 42, Issue 12, pp 2249–2258 | Cite as

Characterization of recombinant glutathione reductase from Antarctic yeast Rhodotorula mucilaginosa

  • Xiaofei Wang
  • Cuijuan Shi
  • Guofu Chen
  • Jie Jiang
  • Chengsheng Zhang
  • Yongping Qiao
  • Yun Ju
  • Ruiqi Wang
  • Guangfeng KanEmail author
  • Haoruo Wei
  • FanFan Zhu
Original Paper
  • 24 Downloads

Abstract

Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide, which helps to maintain a cellular reducing environment during stress in organisms. However, GR of polar yeast has not been well-characterized so far. To fully understand the molecular and enzymatic properties of GR from extreme area and broaden its knowledge, a cDNA-encoding GR from Antarctic sea-ice yeast Rhodotorula mucilaginosa (designated as RmGR) was cloned and expressed in Escherichia coli. The open reading frame of RmGR was 1500 bp, encoding an enzyme of 499 amino acids with a predicted pI of 6.07 and molecular weight of 54.8 kDa. SDS-PAGE and gel filtration analysis results showed that the RmGR was a homodimer. Conserved sequence analysis revealed that RmGR behaved typical characteristics of GR, containing a pyridine nucleotide-disulfide oxidoreductase active site, a flavin adenine dinucleotide (FAD), and reduced nicotinamide adenine dinucleotide phosphate (NADPH) binding motifs and two glutathione oxidized binding motifs. The recombinant enzyme displayed relatively high stability at pH 3.0–6.0 and 20–40 °C with optimal enzymatic activity at 30 °C and pH 7.5. Real-time quantitative PCR data showed that the expression of RmGR gene was upregulated after copper treatment of yeast cells. Moreover, RmGR-transformed E. coli exhibited stronger growth profiles than cells with an empty vector after copper and cadmium treatment. Our results demonstrated the possible function of RmGR in adaptation to heavy metals and its potential application in heterologous expression systems.

Keywords

Glutathione reductase Recombinant protein Antarctic yeast Metal tolerance 

Notes

Acknowledgements

This work was supported by Key Technologies R & D Program of Shandong (Grant Nos. 2016ZDJQ0206, 2019GHY112047), Science and Technology Project of Weihai (WH20140209), and Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (Grant No. HIT.IBRSEM.2013037 and HIT.NSRIF.2016085).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

300_2019_2603_MOESM1_ESM.tif (1.6 mb)
Supplementary file1 (TIFF 1643 kb)
300_2019_2603_MOESM2_ESM.tif (1.4 mb)
Supplementary file2 (TIFF 1477 kb)
300_2019_2603_MOESM3_ESM.tif (932 kb)
Supplementary file3 (TIFF 932 kb)
300_2019_2603_MOESM4_ESM.tif (1.9 mb)
Supplementary file4 (TIFF 1933 kb)
300_2019_2603_MOESM5_ESM.docx (16 kb)
Supplementary file5 (DOCX 16 kb)

References

  1. Achary VMM, Reddy CS, Pandey P, Islam T, Kaul T, Reddy MK (2015) Glutathione reductase a unique enzyme: molecular cloning, expression and biochemical characterization from the stress adapted C4 plant, Pennisetum glaucum (L.) R. Br. Mol Biol Rep 42:947–962PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464CrossRefGoogle Scholar
  3. Arias DG, Marquez VE, Beccaria AJ, Guerrero SA, Iglesias AA (2010) Purification and characterization of a glutathione reductase from Phaeodactylum tricornutum. Protist 161:91–101PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461PubMedCrossRefPubMedCentralGoogle Scholar
  6. Collinson LP, Dawes IW (1995) Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Gene 156:123–127PubMedCrossRefPubMedCentralGoogle Scholar
  7. Couto N, Wood J, Barber J (2016) The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 95:27–42PubMedCrossRefPubMedCentralGoogle Scholar
  8. Ding Y, Miao J, Li G, Wang Q, Kan G, Wang G (2005) Effect of Cd on GSH and GSH-related enzymes of Chlamydomonas sp. ICE-L existing in Antarctic ice. J Environ Sci 17:667–671Google Scholar
  9. Ding Y, Miao JL, Wang QF, Zheng Z, Li GY, Jian JC, Wu ZH (2007) Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L. Polar Biol 31:23–30CrossRefGoogle Scholar
  10. Ding Y, Liu Y, Jian J, Wu Z, Miao J (2012) Molecular cloning and expression analysis of glutathione reductase gene in Chlamydomonas sp. ICE-L from Antarctica. Mar Genom 5:59–64CrossRefGoogle Scholar
  11. Färber PM, Becker K, Müller S, Schirmer RH, Franklin RM (1996) Molecular cloning and characterization of a putative glutathione reductase gene, the PfGR2 gene, from Plasmodium falciparum. Eur J Biochem 239:655–661PubMedCrossRefPubMedCentralGoogle Scholar
  12. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18PubMedPubMedCentralCrossRefGoogle Scholar
  13. Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120PubMedCrossRefPubMedCentralGoogle Scholar
  15. Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212PubMedCrossRefPubMedCentralGoogle Scholar
  16. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gupta A, Kesherwani M, Velmurugan D, Tripathi T (2016) Fasciola gigantica thioredoxin glutathione reductase: biochemical properties and structural modeling. Int J Biol Macromol 89:152–160PubMedCrossRefPubMedCentralGoogle Scholar
  18. Halliwell B, Foyer CH (1978) Properties and physiological function of glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17PubMedCrossRefPubMedCentralGoogle Scholar
  19. Herath HMLPB, Wickramasinghe PDSU, Bathige SDNK, Jayasooriya RGPT, Kim G, Park MA, Kim C, Lee J (2017) Molecular identification and functional delineation of a glutathione reductase homolog from disk abalone (Haliotis discus discus): insights as a potent player in host antioxidant defense. Fish Shellfish Immunol 60:355–367PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ilyas S, Rehman A, Coelho AV, Sheehan D (2016) Proteomic analysis of an environmental isolate of Rhodotorula mucilaginosa after arsenic and cadmium challenge: identification of a protein expression signature for heavy metal exposure. J Proteomics 141:47–56PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ji M, Barnwell CV, Grunden AM (2015) Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea. Extremophiles 19:863–874PubMedCrossRefPubMedCentralGoogle Scholar
  22. Jiang FY, Hellman U, Sroga GE, Bergman B, Mannervik B (1995) Cloning, sequencing, and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120. J Biol Chem 270:22882–22889PubMedCrossRefPubMedCentralGoogle Scholar
  23. Kan GF, Wang XF, Jiang J, Zhang CS, Chi ML, Ju Y, Shi CJ (2018) Copper stress response in yeast Rhodotorula mucilaginosa AN5 isolated from sea ice, Antarctic. Microbiology Open 8:e00657PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kim I, Shin S, Kim Y, Kim H, Yoon H (2009) Expression of a glutathione reductase from Brassica rapa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli. Mol Cells 28:479–488PubMedCrossRefPubMedCentralGoogle Scholar
  25. Korge P, Calmettes G, Weiss JN (2015) Increased reactive oxygen species production during reductive stress: the roles of mitochondrial glutathione and thioredoxin reductases. BBA 1847:514–525PubMedPubMedCentralGoogle Scholar
  26. Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lee H, Won S, Lee B, Park H, Chung W, Jo J (2002) Genomic cloning and characterization of glutathione reductase gene from Brassica campestris var Pekinensis. Mol Cells 13:245–251PubMedPubMedCentralGoogle Scholar
  28. Liu Z, Zhang X, Bai J, Suo B, Xu P, Wang L (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Sci Hortic 121:138–143CrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  30. Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (2010) Ascorbate and glutathione: protectors of plants in oxidative stress. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, The Netherlands, pp 209–229CrossRefGoogle Scholar
  31. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760PubMedCrossRefPubMedCentralGoogle Scholar
  32. Mishra S, Tripathi RD, Srivastava S, Dwivedi S, Trivedi PK, Dhankher OP, Khare A (2009) Thiol metabolism play significant role during Cd detoxification by Ceratophyllum demersum L. Bioresource Technol 100:2155–2161CrossRefGoogle Scholar
  33. Mudalkar S, Sreeharsha RV, Reddy AR (2017) Involvement of glyoxalases and glutathione reductase in conferring abiotic stress tolerance to Jatropha curcas L. Environ Exp Bot 134:141–150CrossRefGoogle Scholar
  34. Ondarza RN, Rendón JL, Ondarza M (1983) Glutathione reductase in evolution. J Mol Evol 19:371–375PubMedCrossRefPubMedCentralGoogle Scholar
  35. Planchon FAM, Boutron CF, Barbante C, Cozzi G, Gaspari V, Wolff EW, Ferrari CP, Cescon P (2002) Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth Planet Sci Lett 200:207–222CrossRefGoogle Scholar
  36. Racker E (1955) Glutathione reductase from bakers' yeast and beef liver. J Biol Chem 217:855–865PubMedPubMedCentralGoogle Scholar
  37. Seo J, Lee K, Rhee J, Hwang D, Lee Y, Park H, Ahn I, Lee J (2006) Environmental stressors (salinity, heavy metals, H2O2) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicus. Aquat Toxicol 80:281–289PubMedCrossRefPubMedCentralGoogle Scholar
  38. Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999CrossRefGoogle Scholar
  39. Tanaka K, Sano T, Ishizuka K (1994) Comparison of properties of leaf and root glutathione reductases from spinach. Physiol Plant 91:353–358CrossRefGoogle Scholar
  40. Tarrío N, Díaz PS, Cerdán ME, Siso MIG (2004) Isolation and characterization of two nuclear genes encoding glutathione and thioredoxin reductases from the yeast Kluyveromyces lactis. BBA 1678:170–175PubMedPubMedCentralGoogle Scholar
  41. Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644PubMedCrossRefPubMedCentralGoogle Scholar
  42. Trivedi DK, Gill SS, Yadav S, Tuteja N (2013) Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis. Plant Signal Behav 8:e23021PubMedCrossRefPubMedCentralGoogle Scholar
  43. Yannarelli GG, Fernández-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512PubMedCrossRefPubMedCentralGoogle Scholar
  44. Yin L, Mano J, Tanaka K, Wang S, Zhang M, Deng X, Zhang S (2017) High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress. Physiol Plant 161:211–223PubMedCrossRefPubMedCentralGoogle Scholar
  45. Zhang P, Liu S, Chen K (2013) Characterization and expression analysis of a glutathione reductase gene from Antarctic moss Pohlia nutans. Plant Mol Biol Rep 31:1068–1076CrossRefGoogle Scholar
  46. Zhou Y, Zhou S, Yu H, Li J, Xia Y, Li B, Wang X, Wang P (2016) Cloning and characterization of filamentous fungal S-nitrosoglutathione reductase from Aspergillus nidulans. J Microbiol Biotechnol 26:928–937PubMedCrossRefPubMedCentralGoogle Scholar
  47. Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou Y, Jin G, Ye M, Zou H, Zhao Z (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Marine Science and TechnologyHarbin Institute of Technology at WeihaiWeihaiPeople’s Republic of China
  2. 2.Key Laboratory of Tobacco Pest Monitoring & Integrated ManagementTobacco Research Institute of Chinese Academy of Agricultural SciencesQingdaoPeople’s Republic of China
  3. 3.Wendeng Osteopath HospitalWendengPeople’s Republic of China

Personalised recommendations