Advertisement

Firmicutes in different soils of Admiralty Bay, King George Island, Antarctica

  • Larissa R. Ramos
  • Renata E. Vollú
  • Diogo Jurelevicius
  • Alexandre S. Rosado
  • Lucy SeldinEmail author
Original Paper

Abstract

The Antarctic continent is known for its harsh conditions, but it can sustain well-adapted microorganisms that are able to survive in these extreme conditions. Different bacterial phyla are found predominating the soils of Antarctic Peninsula including those of King George Island, which is part of the South Shetlands archipelago. It has been previously demonstrated that Firmicutes make up a substantial proportion of the bacterial communities in rhizosphere soils of the region. However, far less is known about the presence of this group of bacteria in different soils of this island. Eleven soil samples of Admiralty Bay, King George Island (Yellow soil, Copacabana, Demay Point, Domeyko Glacier, Hennequin, Ipanema, Machu Picchu, Arctowski, Smok Beach, Punta Plaza and Vale Ulman) were obtained and analysed using culture-independent methods (clone libraries based on the 16S rRNA encoding gene). In total, 582 clones were obtained and those related to Firmicutes were found in all samples varying from 3% (Vale Ulman) to 62.2% (Machu Picchu). The genus Sporosarcina (61.4%) followed by the genus Bacillus (29.1%) predominated among the Firmicutes-related clones. Non-metric multidimensional scaling analysis (NMDS) showed that potassium and phosphorous concentrations influenced the diversity and relative abundance of the different genera belonging to Firmicutes in Copacabana and Arctowski soils, while soil texture was the main driver in Punta Plaza, Machu Picchu, Yellow soil and Demay Point. This study contributes to our current knowledge of the diversity of Firmicutes in different soils across King George Island, Antarctic Peninsula.

Keywords

Antarctica Soils Firmicutes Diversity Clone libraries 

Notes

Acknowledgements

This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). Thanks are due to the Brazilian Antarctic Program, PROANTAR, for the logistic support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S (2009) Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. Can J Microbiol 55:21–36CrossRefGoogle Scholar
  2. Balks MR, Lopez-Martinez JN, Goryachkin SV, Mergelov NS, Schaefer CEGR, Simas FNB, Almond PC, Claridge GGC, McLeod M, Scarrow J (2013) Windows on Antarctic soil-landscape relationships: comparison across selected regions of Antarctica. Geol Soc Lond Spec Publ 381:397–410CrossRefGoogle Scholar
  3. Bottos EM, Scarrow JW, Archer SDJ, McDonald IR, Cary SC (2014) Bacterial community structures of Antarctic soils. In: Cowan DA (ed) Antarctic terrestrial microbiology, chapter 2. Springer, Berlin.Google Scholar
  4. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic dry valley soils. Nat Rev Microbiol 8:129–138CrossRefGoogle Scholar
  5. Convey P, Bindschadler R, Prisco DIG, Fahrbache E, Gutt J, Hodgson PA, Mayewski PA, Summerhayes CP, Turner J (2009) Review: Antarctic climate change and the environment. Antarct Sci 21:541–563CrossRefGoogle Scholar
  6. Coronel-León J, de Grau G, Grau-Campistany A, Farfan M, Rabanal F, Manresa A, Marqués AM (2015) Biosurfactant production by AL 1.1, a Bacillus licheniformis strain isolated from Antarctica: production, chemical characterization and properties. Ann Microbiol 65:2065–2078CrossRefGoogle Scholar
  7. EMBRAPA (1997) Manual de Métodos de Análise de Solo, 2nd edn. EMBRAPA-CNPS, Documentos, Rio de JaneiroGoogle Scholar
  8. Garbeva P, Van Veen JA, Van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–315CrossRefGoogle Scholar
  9. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  10. Hogg ID, Craig Cary S, Convey P, Newsham KK, O’Donnell AG, Adams BJ, Aislabie J, Frati F, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040CrossRefGoogle Scholar
  11. Hong HA, le Duc H, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835CrossRefGoogle Scholar
  12. Huston AL (2008) Biotechnological aspects of cold-adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 347–363CrossRefGoogle Scholar
  13. Logan NA, De Vos P (2011) Endospore-forming soil bacteria, vol 27. Springer, Berlin, pp 1–61CrossRefGoogle Scholar
  14. Logan NA, Lebbe L, Hoste B, Goris J, Forsyth G, Heyndrickx M, Murray BL, Syme N, Wynn-Williams DD, De Vos P (2000) Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 50:1741–1753CrossRefGoogle Scholar
  15. Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calviño A, Rivas F, Batista S (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256CrossRefGoogle Scholar
  16. Mandic-Mulec I, Prosser JI (2011) Diversity of endospore-forming bacteria in soil: characterization and driving mechanisms. In: Logan NA, De Vos P (eds) Endospore-forming soil bacteria, soil biology, chapter 2, vol 27. Springer, BerlinGoogle Scholar
  17. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141CrossRefGoogle Scholar
  18. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643CrossRefGoogle Scholar
  19. Núñez-Montero K, Barrientos L (2018) Advances in Antarctic research for antimicrobial discovery: a comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics (Basel) 7:90CrossRefGoogle Scholar
  20. Oliveira EC, Absher TM, Pellizzari FM, Oliveira MC (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32:1639–1647CrossRefGoogle Scholar
  21. Pearce DA, Newsham KK, Thorne MAS, Calvo-Bado L, Krsek M, Laskaris P, Hodson A, Wellington EM (2012) Metagenomic analysis of a Southern Maritime Antarctic soil. Front Microbiol 3:403CrossRefGoogle Scholar
  22. Rodríguez-Díaz M, Lebbe L, Rodelas B, Heyrman J, De Vos P, Logan NA (2005) Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica. Int J Syst Evol Microbiol 55:2093–2099CrossRefGoogle Scholar
  23. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290CrossRefGoogle Scholar
  24. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  25. Santos AF, Pires F, Jesus HE, Santos AL, Peixoto R, Rosado AS, D'Avila-Levy CM, Branquinha MH (2015) Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil. An Acad Bras Cienc 87:109–119CrossRefGoogle Scholar
  26. Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155CrossRefGoogle Scholar
  27. Silva TR, Duarte AWF, Passarini MRZ, Ruiz ALTG, Franco CH, Moraes CB, Melo IS, Rodrigues RA, Fantinatti-Garboggini F, Oliveira VM (2018) Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol 41:1505–1519CrossRefGoogle Scholar
  28. Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay. ISME J 4:989–1001CrossRefGoogle Scholar
  29. Tomova I, Stoilova-Disheva M, Lazarkevich I, Vasileva-Tonkova E (2015) Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Front Life Sci 8:348–357CrossRefGoogle Scholar
  30. Vollú RE, Jurelevicius D, Ramos LR, Peixoto RS, Rosado AS, Seldin L (2014) Aerobic endospore-forming bacteria isolated from Antarctic soils as producers of bioactive compounds of industrial interest. Polar Biol 37:1121–1131CrossRefGoogle Scholar
  31. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682CrossRefGoogle Scholar
  32. Yergeau E, Schoondermark-Stolk SA, Brodie EL, Déjean S, DeSantis TZ, Gonçalves O, Piceno YM, Andersen GL, Kowalchuk GA (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351CrossRefGoogle Scholar
  33. Youssef NH, Elshahed MS (2008) Diversity rankings among bacterial lineages in soil. ISME J 3:305–313CrossRefGoogle Scholar
  34. Yu Y, Xin YH, Liu HC, Chen B, Sheng J, Chi ZM, Zhou PJ, Zhang DC (2008) Sporosarcina antarctica sp. nov., a psychrophilic bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 58:2114–2117CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Ecologia Molecular Microbiana, Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations