Advertisement

Polar Biology

, Volume 42, Issue 8, pp 1595–1613 | Cite as

Habitat controls on limno-terrestrial diatom communities of Clearwater Mesa, James Ross Island, Maritime Antarctica

  • K. KopalováEmail author
  • J. Soukup
  • T. J. Kohler
  • M. Roman
  • S. H. Coria
  • P. A. Vignoni
  • K. L. Lecomte
  • L. Nedbalová
  • D. Nývlt
  • J. M. Lirio
Original Paper
  • 71 Downloads

Abstract

Diatoms are important ecological indicators in Antarctica, and paleolimnologists routinely apply transfer functions to fossil diatoms recovered from lake sediments to reconstruct past environments. However, living diatom communities may differ among the possible habitat types represented in sediment cores (both within lakes and their immediate proximity), hindering the full and accurate interpretation of fossil records. Therefore, an improved understanding of Antarctic diatom habitat preferences would substantially aid in interpreting regional paleo-material. To gain insights into habitat differences, we sampled epipelon, epilithon, Nostoc mats, lake-adjacent moss, and wet soil from > 30 lakes and ponds from Clearwater Mesa, James Ross Island, spanning a broad gradient in conductivity (a common basis for transfer functions). We found that diatom communities significantly differed between habitat types (although abundances were too low in Nostoc mats to characterize communities), with the clearest distinctions being between submerged (epipelon and epilithon) and exposed (moss and wet soil) groups. Submerged habitat types had greater abundances of attached aquatic taxa (i.e. Gomphonema spp.), while exposed habitats harboured more abundant aerophilic genera (e.g. Hantzschia, Luticola, and Pinnularia). Furthermore, only epilithon communities were significantly related to conductivity, and both epipelon and epilithon habitats showed conspicuous increases in Denticula jamesrossensis at greater conductivity values. Collectively, these results improve our knowledge of limno-terrestrial diatoms from the Maritime Antarctic Region, and further highlight the utility of incorporating knowledge of habitat preferences into (paleo)ecological research.

Keywords

Algae Ecology Biogeography Polar Region Climate change Paleolimnology 

Notes

Acknowledgements

The authors would like to acknowledge the logistical support of the Dirección Nacional del Antártico, Instituto Antártico Argentino, and Marambio and J.G. Mendel stations. This contribution was supported by the Czech Science Foundation Project No. 16-17346Y, Agencia National de Promocion Cientifica y Tecnologica (ANPCyT) Project PICTO-2010–0096 and FONCyT PICT 2017–2026. Funding was also provided by the Ministry of Education, Youth and Sports of the Czech Republic Projects No. LM2015078 and CZ.02.1.01/0.0/0.0/16_013/0001708. Authors wish to acknowledge the assistance of Argentina's Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP No 2017–2019 GI and PUE 2016-CONICET-CICTERRA, MUNI/A/1251/2017and Secretaría de Ciencia y Técnica, Universidad Nacional de Córdoba (SECyT-UNC). MR’s participation in the field campaign was made possible by the Charles University Grant Agency Grant No. 126715. TJK and KK were further supported by Charles University Research Centre Program No. 204069. We would like to thank Marcos Kitaura, Eduardo Ale Monserrat, Emmanuel C. Portalez Carnovai, and Agustín Cúparo for their great help in the field. Lastly, many thanks to Manuel Toro and two anonymous reviewers for their comments, which greatly improved the manuscript.

Author contributions

KK and TJK performed the analyses, interpreted data, and co-wrote the manuscript with significant input and editing from all authors. KK and JS generated the diatom slides and JS counted them. TJK, JML, SHC, PAV, and MR performed the fieldwork. JML and DN led the study from the Argentinian and Czech sides, respectively. LN, KK, PAV, and KKL generated hydrochemical data.

Compliance with ethical standards

Conflict of interest

No conflicts of interest declared.

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  2. Antoniades D, Giralt S, Geyer A, Álvarez-Valero AM, Pla-Rabes S, Granados I, Liu EJ, Toro M, Smellie JL, Oliva M (2018) The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica. Sci Rep 8:17279CrossRefGoogle Scholar
  3. Baas-Becking LGM (1934) Geobiologie of inleiding tot de Milieukunde. Van Stockum and Zoon, The HagueGoogle Scholar
  4. Björck S, Olson S, Ellis-Evans C, Håkansson H, Humlum O, Lirio JM (1996) Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 121:195–220.  https://doi.org/10.1016/0031-0182(95)00086-0 CrossRefGoogle Scholar
  5. Cantonati M, Lowe RL (2014) Lake benthic algae: toward an understanding of their ecology. Freshw Sci 33:475–486CrossRefGoogle Scholar
  6. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265270Google Scholar
  7. Chao A, Hwang WH, Chen YC, Kuo CY (2000) Estimating the number of shared species in two communities. Stat Sin 10:227–246Google Scholar
  8. Chattová B (2018) Diatoms (Bacillariophyta) associated with lichens from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Czech Polar Rep 8:151–161.  https://doi.org/10.5817/CPR2018-2-12 Google Scholar
  9. Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User's Guide and application published at: https://purl.oclc.org/estimates
  10. Convey P (2010) Terrestrial biodiversity in Antarctica—recent advances and future challenges. Polar Sci 4:135–147.  https://doi.org/10.1016/j.polar.2010.03.003 CrossRefGoogle Scholar
  11. Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641.  https://doi.org/10.1016/j.polar.2010.03.003 CrossRefGoogle Scholar
  12. Darling JP, Garland DD, Stanish F, Esposito RM, Sokol ER, McKnight DM (2017) Thermal autecology describes the occurrence patterns of four benthic diatoms in McMurdo Dry Valley streams. Polar Biol 40:2381–2396.  https://doi.org/10.1007/s00300-017-2151-y CrossRefGoogle Scholar
  13. De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574.  https://doi.org/10.1890/08-1823.1 CrossRefGoogle Scholar
  14. Douglas MSV, Smol JP, Blake W Jr (1994) Marked post-18th century environmental change in high-arctic ecosystems. Science 226:416–419.  https://doi.org/10.1126/science.266.5184.416 CrossRefGoogle Scholar
  15. Esposito RM, Horn SL, McKnight DM, Cox MJ, Grant MC, Spaulding SA, Doran PT, Cozzetto KD (2006) Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophys Res Lett 33:L07406.  https://doi.org/10.1029/2006GL025903 CrossRefGoogle Scholar
  16. Esposito RMM, Spaulding SA, McKnight DM, Van de Vijver B, Kopalová K, Lubinski D, Hall B, Whittaker T (2008) Inland diatoms from the McMurdo dry valleys and James Ross Island, Antarctica. Botany 86:1378–1392.  https://doi.org/10.1139/B08-100 CrossRefGoogle Scholar
  17. Gooseff MN, Barrett JE, Adams BJ, Doran PT, Fountain AG, Lyons WB, McKnight DM, Priscu JC, Sokol ER, Takacs-Vesbach C, Vandegehuchte ML (2017) Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat Ecol Evol 1:1334CrossRefGoogle Scholar
  18. Gregory-Eaves I, Smol JP, Finney BP, Edwards ME (1999) Diatom-based transfer functions for inferring past climatic and environmental changes in Alaska, USA. Arct Antarct Alp Res 31:353–365.  https://doi.org/10.1080/15230430.1999.12003320 CrossRefGoogle Scholar
  19. Hodgson DA, Verleyen E, Sabbe K, Squier AH, Keely BJ, Leng MJ, Saunders KM, Vyverman W (2005) Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core. Quat Res 64:83–99.  https://doi.org/10.1016/j.yqres.2005.04.002 CrossRefGoogle Scholar
  20. Izaguirre I, Mataloni G, Vinocur A, Tell G (1993) Temporal and spatial variations of phytoplankton from Boeckella lake (Hope Bay, Antarctic Peninsula). Antarct Sci 5:137–141.  https://doi.org/10.1017/S0954102093000197 CrossRefGoogle Scholar
  21. Jones J (1996) The diversity, distribution and ecology of diatoms from Antarctic inland waters. Biodivers Conserv 5:1433–1449.  https://doi.org/10.1007/BF00051986 CrossRefGoogle Scholar
  22. Kochman-Kędziora N, Noga T, Olech M, Van De Vijver B (2018) Freshwater diatoms of the Ecology Glacier foreland, King George Island, South Shetland Islands. Pol Polar Res 39:393–412.  https://doi.org/10.24425/118753 Google Scholar
  23. Konfirst MA, Sjunneskog C, Scherer RP, Doran PT (2011) A diatom record of environmental change in Fryxell Basin, Taylor Valley, Antarctica, late Pleistocene to present. J Paleolimnol 46:257–272.  https://doi.org/10.1007/s10933-011-9537-6 CrossRefGoogle Scholar
  24. Kopalová K, Elster J, Nedbalová L, Van de Vijver B (2009) Three new terrestrial diatom species from seepage areas on James Ross Island (Antarctic Peninsula Region). Diatom Res 24:113–122.  https://doi.org/10.1080/0269249X.2009.9705786 CrossRefGoogle Scholar
  25. Kopalová K, Van de Vijver B (2013) Structure and ecology of freshwater benthic diatom communities from Byers Peninsula, Livingston Island, South Shetland Island. Antarct Sci 25:239–253.  https://doi.org/10.1017/S0954102012000764 CrossRefGoogle Scholar
  26. Kopalová K, Nedbalová L, de Haan M, Van de Vijver B (2011) Description of five new species of the diatom genus Luticola (Bacillariophyta, Diadesmidaceae) found in lakes of James Ross Island (Maritime Antarctic Region). Phytotaxa 27:44–60.  https://doi.org/10.11646/phytotaxa.27.1.5 CrossRefGoogle Scholar
  27. Kopalová K, Veselá J, Elster J, Nedbalová L, Komárek J, Van de Vijver B (2012) Benthic diatoms (Bacillariophyta) from seepages and streams on James Ross Island (NW Weddell Sea, Antarctica). Plant Ecol Evol 145:190–208.  https://doi.org/10.5091/plecevo.2012.639 CrossRefGoogle Scholar
  28. Kopalová K, Nedbalová L, Nývlt D, Elster J, Van de Vijver B (2013) Diversity, ecology and biogeography of the freshwater diatom communities from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Polar Biol 36:933–948.  https://doi.org/10.1007/s00300-013-1317-5 CrossRefGoogle Scholar
  29. Kopalová K, Ochyra R, Nedbalová L, Van de Vijver B (2014) Moss-inhabiting diatoms from two contrasting Maritime Antarctic islands. Plant Ecol Evol 147:67–84.  https://doi.org/10.5091/plecevo.2014.896 CrossRefGoogle Scholar
  30. Krammer K (2000) The genus Pinnularia. Diatoms of Europe. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  31. Lee JR, Raymond B, Bracegirdle TJ, Chadès I, Fuller RA, Shaw JD, Terauds A (2017) Climate change drives expansion of Antarctic ice-free habitat. Nature 547:49–54.  https://doi.org/10.1038/nature22996 CrossRefGoogle Scholar
  32. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  33. Levkov Z, Metzeltin D, Pavlov A (2013) Diatoms of Europe diatoms of the European inland waters and comparable habitats, Luticola and Luticolopsis, vols 7. Koeltz Scientific Books, KönigsteinGoogle Scholar
  34. Lyons WB, Welch KA, Carey AE, Doran PT, Wall DH, Virginia RA, Fountain AG, Csathó BM, Tremper CM (2005) Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event. Ann Glaciol 40:200–206CrossRefGoogle Scholar
  35. Lyons WB, Welch KA, Gardner CB, Jaros C, Moorhead DL, Knoepfle JL, Doran PT (2012) The geochemistry of upland ponds, Taylor Valley, Antarctica. Antarct Sci 24:3–14CrossRefGoogle Scholar
  36. McGowan S, Gunn HV, Whiteford EJ, Anderson NJ, Jones VJ, Law AC (2018) Functional attributes of epilithic diatoms for palaeoenvironmental interpretations in South-West Greenland lakes. J Paleolimnol 60:273–298.  https://doi.org/10.1007/s10933-017-9968-9 CrossRefGoogle Scholar
  37. McKnight DM, Andrews ED (1993) Potential hydrologic and geochemical consequences of the 1992 merging of Lake Chad with Lake Hoare in Taylor Valley. Antarct J 28:249–251Google Scholar
  38. Michelutti N, Holtham AJ, Douglas MS, Smol JP (2003) Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. J Phycol 39:465–480CrossRefGoogle Scholar
  39. Michelutti N, Smol JP, Douglas MS (2006) Ecological characteristics of modern diatom assemblages from Axel Heiberg Island (High Arctic Canada) and their application to paleolimnological inference models. Can J Bot 84:1695–1713.  https://doi.org/10.1139/B06-122 CrossRefGoogle Scholar
  40. Nedbalová L, Nývlt D, Kopáček J, Šobr M, Elster J (2013) Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. Antarct Sci 25:358–372.  https://doi.org/10.1017/S0954102012000934 CrossRefGoogle Scholar
  41. Ohtsuka T, Kudoh S, Imura S, Ohtani S (2006) Diatoms composing benthic microbial mats in freshwater lakes of Skarvsnes ice-free area East Antarctica. Polar Biosci 20:113130Google Scholar
  42. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: community ecology package. R package version 2.4-6. https://CRAN.R-project.org/package=vegan
  43. Oliva M, Navarro F, Hrbáček F, Hernández A, Nývlt D, Pereira P, Fernández JR, Trigo RM (2017) Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci Total Environ 580:210223.  https://doi.org/10.1016/j.scitotenv.2016.12.030 CrossRefGoogle Scholar
  44. Øvstedal DO, Lewis-Smith RL (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, CambridgeGoogle Scholar
  45. Pielou E (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144.  https://doi.org/10.1016/0022-5193(66)90013-0 CrossRefGoogle Scholar
  46. Píšková A, Roman M, Bulínová M, Pokorný M, Sanderson D, Cresswell A, Lirio JM, Coria SH, Nedbalová L, Lami A, Musazzi S, Van de Vijver B, Nývlt D, Kopalová K (2019) Late Holocene palaeoenvironmental changes at Lake Esmeralda (Vega Island, Antarctic Peninsula) based on a multi-proxy analysis of laminated lake sediment. The Holocene.  https://doi.org/10.1177/09596836198380 Google Scholar
  47. Pla-Rabés S, Catalan J (2018) Diatom species variation between lake habitats: implications for interpretation of paleolimnological records. J Paleolimnol 60:169–187CrossRefGoogle Scholar
  48. Pla-Rabes S, Toro M, Van De Vijver B, Rocher C, Villaescusa JA, Camacho A, Quesada A (2013) Stability and endemicity of benthic diatom assemblages from different substrates in a maritime stream on Byers Peninsula, Livingston Island, Antarctica: the role of climate variability. Antarct Sci 25:254–269CrossRefGoogle Scholar
  49. Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645.  https://doi.org/10.1126/science.1064074 CrossRefGoogle Scholar
  50. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  51. Roberts D, McMinn A (1996) Relationships between surface sediment diatom assemblages and water chemistry gradients in saline lakes of the Vestfold Hills, Antarctica. Antarct Sci 8:331–341CrossRefGoogle Scholar
  52. Roberts D, McMinn A (1999a) A diatom-based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica. The Holocene 9:401–408.  https://doi.org/10.1191/095968399671725699 CrossRefGoogle Scholar
  53. Roberts D, McMinn A (1999b) Diatoms of the saline lakes of the Vestfold Hills, Antarctica. Bibl Diatomol 44:1–82Google Scholar
  54. Roman M, Nedbalová L, Kohler TJ, Lirio JM, Coria SH, Kopáček J, Vignoni PA, Kopalová K, Lecomte KL, Elster J, Nývlt D (2019) Lacustrine systems of Clearwater Mesa (James Ross Island, northeastern Antarctic Peninsula): geomorphological settings and limnological characterization. Antarct Sci.  https://doi.org/10.1017/S0954102019000178 Google Scholar
  55. Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  56. Šabacká M, Priscu JC, Basagic HJ, Fountain AG, Wall DH, Virginia RA, Greenwood MC (2012) Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica. Geomorphology 155:102–111.  https://doi.org/10.1016/j.geomorph.2011.12.009 Google Scholar
  57. Sabbe K, Verleyen E, Hodgson DA, Vanhoutte K, Vyverman W (2003) Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarct Sci 15:227–248.  https://doi.org/10.1017/S095410200300124X CrossRefGoogle Scholar
  58. Sakaeva A, Sokol ER, Kohler TJ, Stanish LF, Spaulding SA, Howkins A, Welch KA, Lyons WB, Barrett JE, McKnight DM (2016) Evidence for dispersal and habitat controls on pond diatom communities from the McMurdo Sound Region of Antarctica. Polar Biol 39:2441–2456.  https://doi.org/10.1007/s00300-016-1901-6 CrossRefGoogle Scholar
  59. Saunders KM, Hodgson DA, McMurtrie S, Grosjean M (2015) A diatom–conductivity transfer function for reconstructing past changes in the Southern Hemisphere westerly winds over the Southern Ocean. J Quat Sci 30:464–477.  https://doi.org/10.1002/jqs.2788 CrossRefGoogle Scholar
  60. Shannon C, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, IllinoisGoogle Scholar
  61. Smellie JL, Johnson JS, McIntosh WC, Esser R, Gudmundsson MT, Hambrey MJ, van Wyk de Vries B (2008) Six million years of glacial history recorded in the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeogr Palaeoclimatol Palaeoevol 260:122–148.  https://doi.org/10.1029/201OSP001047 CrossRefGoogle Scholar
  62. Smellie JL, Johnson JS, Nelson AE (2013) Geological Map of James Ross Island 1. James Ross Island Volcanic Group (1:125000 scale). BAS GEOMAP 2 Series, Sheet 5.  https://doi.org/10.1029/2006GC001450.20
  63. Smol JP, Stoermer EF (2010) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Souffreau C, Vanormelingen P, Verleyen E, Sabbe K, Vyverman W (2011) Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia 49:309–324.  https://doi.org/10.2216/09-30.1 CrossRefGoogle Scholar
  65. Spaulding SA, McKnight DM, Smith RL, Dufford R (1994) Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J Plankton Res 16:527–541.  https://doi.org/10.1093/plankt/16.5.527 CrossRefGoogle Scholar
  66. Spaulding SA, McKnight DM, Stoermer EF, Doran PT (1997) Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. J Paleolimnol 17:403–420.  https://doi.org/10.1023/A:1007931329881 CrossRefGoogle Scholar
  67. Spaulding S, Van de Vijver B, Hodgson D, McKnight D, Verleyen E, Stanish L (2010) Diatoms as indicators of environmental change in Antarctic and subantarctic freshwaters. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 267–286CrossRefGoogle Scholar
  68. Stanish LF, Nemergut DR, McKnight DM (2011) Hydrologic processes influence diatom community composition in Dry Valley streams. J N Am Benthol Soc 30:1057–1073CrossRefGoogle Scholar
  69. Sterken M, Roberts SJ, Hodgson DA, Vyverman W, Balbo AL, Sabbe K, Moreton SG, Verleyen E (2012) Holocene glacial and climate history of Prince Gustav Channel, northeastern Antarctic Peninsula. Quat Sci Rev 31:93–111.  https://doi.org/10.1016/j.quascirev.2011.10.017 CrossRefGoogle Scholar
  70. Terauds A, Lee JR (2016) Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Divers Distrib 22:836–840.  https://doi.org/10.4225/15/5729930925224 CrossRefGoogle Scholar
  71. Terauds A, Chown SL, Morgan F, Peat HJ, Watts DJ, Keys H, Convey P, Bergstrom DM (2012) Conservation biogeography of the Antarctic. Divers Distrib 18:726–741.  https://doi.org/10.1111/j.1472-4642.2012.00925.x CrossRefGoogle Scholar
  72. Turner J, Lu H, White I, Phillips T, Hosking JS, Bracegirdle TJ, Marshall GJ, Mulvaney R, Deb P (2016) Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535:411–415.  https://doi.org/10.1038/nature18645 CrossRefGoogle Scholar
  73. Váczi P, Barták M, Nedbalová L, Elster J (2011) Comparative analysis of temperature courses in Antarctic lakes of different morphology: study from James Ross Island, Antarctica. Czech Polar Rep 1:78–87.  https://doi.org/10.5817/CPR2011-2-7 CrossRefGoogle Scholar
  74. Van de Vijver B, Frenot Y, Beyens L (2002) Freshwater diatoms from Île de la Possession (Crozet Archipielago, Subantarctica). Bibl Diatomol 46:1–412Google Scholar
  75. Van de Vijver B, Gremmen N, Smith V (2008) Diatom communities from the sub-Antarctic Prince Edward Islands: diversity and distribution patterns. Polar Biol 31:795–808.  https://doi.org/10.1007/s00300-008-0418-z CrossRefGoogle Scholar
  76. Van de Vijver B, Zidarova R, Kopalová K (2014) New species in the genus Muelleria (Bacillariophyta) from the Maritime Antarctic Region. Fottea 14:77–90.  https://doi.org/10.5507/fot.2014.006 CrossRefGoogle Scholar
  77. Van de Vijver B, Kopalová K, Kociolek JP, Ector L (2015) Denticula jamesrossensis, a new freshwater diatom (Bacillariophyta) species from the Maritime Antarctic Region. Fottea 15:105–111.  https://doi.org/10.5507/fot.2015.009 CrossRefGoogle Scholar
  78. Van de Vijver B, Kopalová K, Zidarova R, Kociolek JP (2016) Two new Gomphonema species (Bacillariophyta) from the Maritime Antarctic Region. Phytotaxa 269:209–220.  https://doi.org/10.11646/phytotaxa.269.3.4 CrossRefGoogle Scholar
  79. Van der Werff A (1955) A new method of concentrating and cleaning diatoms and other organisms. Verh Int Ver Theor Angew Limnol 2:276–277Google Scholar
  80. Vinocur A, Izaguirre I (2004) Freshwater algae (excluding Cyanophyceae) from nine lakes and pools of Hope Bay, Antarctic Peninsula. Antarct Sci 6:483–489.  https://doi.org/10.1017/S0954102094000738 CrossRefGoogle Scholar
  81. Wharton RA Jr, Parker BC, Simmons GM Jr (1983) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22:355–365.  https://doi.org/10.2216/i0031-8884-22-4-355.1 CrossRefGoogle Scholar
  82. Zidarova R, Kopalová K, Van de Vijver B (2016) Diatoms from the Antarctic Region. I: Maritime Antarctica. Iconographia Diatomologica, vol 24Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ecology, Faculty of ScienceCharles UniversityPragueCzech Republic
  2. 2.Department of Geography, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Instituto Antártico ArgentinoGeneral San MartínArgentina
  4. 4.Section 5.2: Climate Dynamics and Landscape EvolutionGFZ German Research Centre for GeosciencesPotsdamGermany
  5. 5.FCEFyN, Universidad Nacional de Córdoba (UNC)CórdobaArgentina
  6. 6.Centro de Investigaciones en Ciencias de la Tierra (CICTERRA)CONICET/Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations