Advertisement

Polar Biology

, Volume 42, Issue 8, pp 1561–1570 | Cite as

Combined effects of simulated browsing, warming and nutrient addition on forage availability for migratory caribou in Nunavik, Canada

  • Valérie Saucier
  • Emilie Champagne
  • Steeve D. Côté
  • Jean-Pierre TremblayEmail author
Original Paper

Abstract

At high population size, migratory caribou (Rangifer tarandus) are regulated by forage abundance in their summer range. Climate warming likely affects forage availability by increasing productivity and advancing phenology of vegetation. Our objective was to investigate the combined effects of browsing and climate warming on the availability of dwarf birch (Betula glandulosa). We simulated direct (warming, with open-top chambers) and indirect (increased nutrient cycling) effects of climate warming in interaction with simulated browsing (leaf stripping) from 2009 to 2013 in Nunavik, Canada. We measured the effect of treatments on dwarf birch biomass and phenology. Moderate and heavy browsing reduced the estimated biomass of birch leaves by 14% and 34%, respectively. Fertilization did not increase the biomass of birch leaves, but increased the biomass of another forage, Poaceae. The warming treatment advanced the opening of birch leaves by 4 days (95% CI: [3, 6]) in 2011 and 7 [5, 8] days in 2013, the two years colder than average. The absence of significant phenological shifts in warmed plots during warmer springs suggests that established dwarf birches may have reached a threshold in a limiting resource, likely soil moisture, under which they cannot respond to further warming. Our results demonstrate that browsing can reduce forage biomass, but the variability in caribou populations could provide windows of opportunity for shrub growth.

Keywords

Betula glandulosa Climate change Herbaceous arctic tundra Phenology Rangifer tarandus 

Notes

Acknowledgments

V. Saucier received scholarships from Caribou Ungava, EnviroNord, Association of Canadian Universities for Northern Studies and the Beverly and Qamarniqjuak management board. This project is part of the Caribou Ungava research program (https://www.caribou-ungava.ulaval.ca/en/accueil/) funded by Natural Sciences and Engineering Research Council (NSERC Grant no. CRDPJ 369122-08) of Canada, Ministère des Forêts, de la Faune et des Parcs du Québec, ArcticNet, Fonds de recherche du Québec nature et technologies, Hydro Québec, Xstrata Nickel (now Glencore), Fédération des pourvoiries du Québec inc., Fédération québécoise des chasseurs et pêcheurs, First Air, Makivik Corporation, CircumArctic Rangifer Monitoring and Assessment (CARMA), International Polar Year, Canada Foundation for Innovation, Institute for Environmental Monitoring and Research, Fondation de la Faune du Québec, Ouranos, and the Canadian Wildlife Federation. We are particularly indebted to Glencore—Raglan Mine for their collaboration, logistic support and the continuous use of their infrastructures. The Quarqalik landholding corporation of Salluit welcomed our team on their land. Thanks to Raglan Mine employees, S. Lavoie, M. LeCorre, A.-A. Simard, A. Drolet, M. Bonin, G. Daigle, M.-C. Martin, A. Brousseau, B. A. Campeau, and especially J. Boulanger-Pelletier, D. Côté-Vaillancourt and F. Dulude-de-Blouin for their help with field work. We are grateful to C. Hins and S. De Bellefeuille for logistical help, to M. LeCorre for help with the NARR data and to A. Drolet, M. Bonin, and S. Lavoie for reviewing an earlier version of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

300_2019_2543_MOESM1_ESM.docx (13 kb)
Supplementary file1 (DOCX 14 kb)
300_2019_2543_MOESM2_ESM.docx (204 kb)
Supplementary file2 (DOCX 204 kb)

References

  1. Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol 182:65–77.  https://doi.org/10.1007/s11258-005-9031-1 Google Scholar
  2. Agriculture and Agri-Food Canada (2013) National ecological framework of Canada: Ecological Framework Attribute. https://sis.agr.gc.ca/cansis/nsdb/ecostrat/1999report/data_tables.html. Accessed 4 Sept 2014
  3. Arft AM et al (1999) Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol Monog 69:491–511Google Scholar
  4. Bergerud AT, Luttich SN, Camps L (2008) The return of Caribou to Ungava. McGill-Queen's University Press, MontrealGoogle Scholar
  5. Bjorkman AD, Elmendorf SC, Beamish AL, Vellend M, Henry GHR (2015) Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob Change Biol 21:4651–4661.  https://doi.org/10.1111/gcb.13051 CrossRefGoogle Scholar
  6. Bråthen KA, Hagberg O (2004) More efficient estimation of plant biomass. J Veg Sci 15:653–660CrossRefGoogle Scholar
  7. Bret-Harte MS, Shaver GR, Zoerner JP, Johnstone JF, Wagner JL, Chavez AS, Gunkelman RF, Lippert SC, Laundre JA (2001) Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82:18–32CrossRefGoogle Scholar
  8. Bryant JP, Joly K, Chapin SF, DeAngelis DL, Kielland K (2014) Can antibrowsing defense regulate the spread of woody vegetation in Arctic tundra? Ecography 37:204–211.  https://doi.org/10.1111/j.1600-0587.2013.00436.x CrossRefGoogle Scholar
  9. Cebrian MR, Kielland K, Finstad G (2008) Forage quality and reindeer productivity: multiplier effects amplified by climate change. Arct Antarct Alp Res 40:48–54CrossRefGoogle Scholar
  10. Centre for Nordic Studies (2018) Climate station data from the Salluit Region in Nunavik, Quebec, Canada, v. 1.5 (1987–2017). Nordicana D3. doi: 10.5885/45048SL-4708BCCDFA124359Google Scholar
  11. Champagne E, Tremblay JP, Côté SD (2012) Tolerance of an expanding subarctic shrub, Betula glandulosa, to simulated caribou browsing. PLoS ONE 7:e51940.  https://doi.org/10.1371/journal.pone.0051940 CrossRefGoogle Scholar
  12. Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711.  https://doi.org/10.1111/j.1365-2486.2005.00926.x CrossRefGoogle Scholar
  13. Conover WJ (1999) Practical nonparametric statistics, 3rd edn. Wiley, New YorkGoogle Scholar
  14. Couturier S, Jean D, Otto R, Rivard S (2004) Demography of the migratory tundra caribou (Rangifer tarandus) of the Nord-du-Québec region and Labrador. Ministère des Ressources naturelles, de la Faune et des Parcs, Direction de l'aménagement de la faune du Nord-du-Québec and Direction de la recherche sur la faune, QuébecGoogle Scholar
  15. Crête M, Huot J, Gauthier L (1990) Food selection during early lactation by caribou calving on the tundra in Québec. Arctic 43:60–65.  https://doi.org/10.14430/arctic1592
  16. Doiron M, Gauthier G, Lévesque E (2014) Effects of experimental warming on nitrogen concentration and biomass of forage plants for an arctic herbivore. J Ecol 102:508–517.  https://doi.org/10.1111/1365-2745.12213 CrossRefGoogle Scholar
  17. Dunne JA, Harte J, Taylor KJ (2003) Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol Monogr 73:69–86CrossRefGoogle Scholar
  18. Elmendorf SC et al (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175.  https://doi.org/10.1111/j.1461-0248.2011.01716.x CrossRefGoogle Scholar
  19. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142.  https://doi.org/10.1111/j.1461-0248.2007.01113.x CrossRefGoogle Scholar
  20. Environment Canada (2014) Climatology of temperature and precipitation. Observation for June–July–August from the 1981–2010 period. https://weather.gc.ca/saisons/clim_e.html. Accessed 11 July 2014
  21. Fortier R, LeBlanc AM, Yu W (2011) Impacts of permafrost degradation on a road embankment at Umiujaq in Nunavik (Quebec), Canada. Can Geotech J 48:720–740.  https://doi.org/10.1139/t10-101 CrossRefGoogle Scholar
  22. Fulton RJ (1995) Surficial materials of Canada, Geological Survey of Canada, Map 1880A, 1:5,000,000. G.S.C, OttawaGoogle Scholar
  23. Gauthier L, Nault R, Crête M (1989) Seasonal variation in the diet of George River Caribou Herd, Québec. Nat Can 116:101–112 (in French) Google Scholar
  24. Gauthier G, Bety J, Cadieux MC, Legagneux P, Doiron M, Chevallier C, Lai S, Tarroux A, Berteaux D (2013) Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Phil Trans R Soc B 368:20120482.  https://doi.org/10.1098/rstb.2012.0482 CrossRefGoogle Scholar
  25. Gerhart KL, White RG, Cameron RD, Russell DE (1996) Body composition and nutrient reserves of arctic caribou. Can J Zool 74:136–146.  https://doi.org/10.1139/z96-018 CrossRefGoogle Scholar
  26. Gunn A, Skogland T (1997) Responses of caribou and reindeer to global warming. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and arctic terrestrial ecosystems. Springer, New York, pp 189–200CrossRefGoogle Scholar
  27. Henry GHR, Molau U (1997) Tundra plants and climate change: the International Tundra Experiment (ITEX). Glob Change Biol 3:1–9.  https://doi.org/10.1111/j.1365-2486.1997.gcb132.x CrossRefGoogle Scholar
  28. IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I. II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC Geneva, p 151Google Scholar
  29. Jeong SJ, Ho CH, Gim HJ, Brown ME (2011) Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob Change Biol 17:2385–2399.  https://doi.org/10.1111/j.1365-2486.2011.02397.x CrossRefGoogle Scholar
  30. Jonasson S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52:101–106.  https://doi.org/10.2307/3565988 CrossRefGoogle Scholar
  31. Klein DR (1990) Variation in quality of caribou and reindeer forage plants associated with season, plant part, and phenology. Rangifer Special 10(3):123–130.  https://doi.org/10.7557/2.10.3.841 CrossRefGoogle Scholar
  32. Klein JA, Harte J, Zhao XQ (2007) Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol Appl 17:541–557.  https://doi.org/10.1890/05-0685 CrossRefGoogle Scholar
  33. Krab EJ, Roennefarth J, Becher M, Blume-Werry G, Keuper F, Klaminder J, Kreyling J, Makoto K, Milbau A, Dorrepaal E (2018) Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions. J Ecol 106:599–612.  https://doi.org/10.1111/1365-2745.12872 CrossRefGoogle Scholar
  34. Leik RK (1997) Experimental design and the analysis of variance. Pine Forge Press, Thousand OaksCrossRefGoogle Scholar
  35. Lévesque E, Henry GHR, Svoboda J (1997) Phenological and growth responses of Papaver radicatum along altitudinal gradients in the Canadian High Arctic. Glob Change Biol 3:125–145.  https://doi.org/10.1111/j.1365-2486.1997.gcb145.x CrossRefGoogle Scholar
  36. Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14.  https://doi.org/10.1016/j.agrformet.2006.03.006 CrossRefGoogle Scholar
  37. Manseau M, Huot J, Crête M (1996) Effects of summer grazing by caribou on composition and productivity of vegetation: community and landscape level. J Ecol 84:503–513.  https://doi.org/10.2307/2261473 CrossRefGoogle Scholar
  38. Mårell A, Hofgaard A, Danell K (2006) Nutrient dynamics of reindeer forage species along snowmelt gradients at different ecological scales. Basic Appl Ecol 7:13–30.  https://doi.org/10.1016/j.baae.2005.04.005 CrossRefGoogle Scholar
  39. Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Levesque E, Molau U, Molgaard P, Parsons AN, Svoboda J, Virginia RA (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Change Biol 3:20–32.  https://doi.org/10.1111/j.1365-2486.1997.gcb136.x CrossRefGoogle Scholar
  40. Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360.  https://doi.org/10.1175/BAMS-87-3-343 CrossRefGoogle Scholar
  41. Messier F, Huot J, Lehenaff D, Luttich S (1988) Demography of the George river caribou herd: evidence of population regulation by forage exploitation and range expansion. Arctic 41:279–287. https://doi.org/10.14430/arctic1733
  42. Ministère des Ressources Naturelles et de la Faune (2003) Vegetation Zones and Bioclimatic Domains in Québec. Gouvernement du Québec, Québec. https://mffp.gouv.qc.ca/english/publications/forest/publications/zone-a.pdf. Accessed 29 May 2019.
  43. Molau U (1997) Responses to natural climatic variation and experimental warming in two tundra plant species with contrasting life forms: Cassiope tetragona and Ranunculus nivalis. Glob Change Biol 3:97–107.  https://doi.org/10.1111/j.1365-2486.1997.gcb138.x CrossRefGoogle Scholar
  44. Morrissette-Boileau C, Boudreau S, Tremblay JP, Côté SD (2018a) Simulated caribou browsing limits the effect of nutrient addition on the growth of Betula glandulosa, an expanding shrub species in Eastern Canada. J Ecol 106:1256–1265.  https://doi.org/10.1111/1365-2745.12899 CrossRefGoogle Scholar
  45. Morrissette-Boileau C, Boudreau S, Tremblay JP, Côté SD (2018b) Revisiting the role of herbivores in the control of shrub expansion in northern Nunavik. Polar Biol 41:1845–1853.  https://doi.org/10.1007/s00300-018-2325-2 CrossRefGoogle Scholar
  46. Myers-Smith IH et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett.  https://doi.org/10.1088/1748-9326/6/4/045509
  47. Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O (2009) Herbivores inhibit climate-driven shrub expansion on the tundra. Glob Change Biol 15:2681–2693.  https://doi.org/10.1111/j.1365-2486.2009.01935.x CrossRefGoogle Scholar
  48. Pau SE, Wolkovich M, Cook BI, Davies TJ, Kraft NJB, Bolmgren K, Betancourt JL, Cleland EE (2011) Predicting phenology by integrating ecology, evolution and climate science. Glob Change Biol 17:3633–3643.  https://doi.org/10.1111/j.1365-2486.2011.02515.x CrossRefGoogle Scholar
  49. Plante S, Champagne E, Ropars P, Boudreau S, Lévesque E, Tremblay B, Tremblay J-P (2014) Shrub cover in northern Nunavik: can herbivores limit shrub expansion? Polar Biol 37:611–619.  https://doi.org/10.1007/s00300-014-1461-6 CrossRefGoogle Scholar
  50. Pop EW, Oberbauer SF, Starr G (2000) Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana. Oecologia 124:176–184.  https://doi.org/10.1007/s004420050005 CrossRefGoogle Scholar
  51. Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Phil Trans R Soc B 363:2367–2373.  https://doi.org/10.1098/rstb.2007.2207 CrossRefGoogle Scholar
  52. Post E, Klein DR (1999) Caribou calf production and seasonal range quality during a population decline. J Wildl Manag 63:335–345.  https://doi.org/10.2307/3802517 CrossRefGoogle Scholar
  53. Post E, Pedersen C, Wilmers CC, Forchhammer MC (2008) Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc R Soc B 275:2005–2013.  https://doi.org/10.1098/rspb.2008.0463 CrossRefGoogle Scholar
  54. Ravolainen VT, Bråthen KA, Ims RA, Yoccoz NG, Henden J-A, Killengreen ST (2011) Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic Appl Ecol 12:643–653.  https://doi.org/10.1016/j.baae.2011.09.009 CrossRefGoogle Scholar
  55. Ropars P, Boudreau S (2012) Shrub expansion at the forest–tundra ecotone: spatial heterogeneity linked to local topography. Environ Res Lett 7:015501.  https://doi.org/10.1088/1748-9326/7/1/015501 CrossRefGoogle Scholar
  56. SAS Institute (2012) The SAS system for Windows V9.3. SAS Institute, CaryGoogle Scholar
  57. Seastedt TR, Knapp AK (1993) Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am Nat 141:621–633.  https://doi.org/10.1086/285494 CrossRefGoogle Scholar
  58. Stenseth NC (2002) Climate, changing phenology, and other life history traits: Nonlinearity and match-mismatch to the environment. Proc Natl Acad Sci USA 99:13379–13381.  https://doi.org/10.1073/pnas.212519399 CrossRefGoogle Scholar
  59. Street LE, Burns NR, Woodin SJ (2015) Slow recovery of High Arctic heath communities from nitrogen enrichment. New Phytol 206:682–695.  https://doi.org/10.1111/nph.1326 CrossRefGoogle Scholar
  60. Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005) Winter biological processes could help convert arctic tundra to shrubland. Bioscience 55:17–26CrossRefGoogle Scholar
  61. Taillon J, Barboza PS, Côté SD (2013) Nitrogen allocation to offspring and milk production in a capital breeder. Ecology 94:1815–1827.  https://doi.org/10.1890/12-1424.1 CrossRefGoogle Scholar
  62. Taillon J, Festa-Bianchet M, Côté SD (2012) Shifting targets in the tundra: protection of migratory caribou calving grounds must account for spatial changes over time. Biol Conserv 147:163–173.  https://doi.org/10.1016/j.biocon.2011.12.027 CrossRefGoogle Scholar
  63. Van der Wal R, Madan N, van Lieshout S, Dormann C, Langvatn R, Albon SD (2000) Trading forage quality for quantity? Plant phenology and patch choice by Svalbard reindeer. Oecologia 123:108–115.  https://doi.org/10.1007/s004420050995 CrossRefGoogle Scholar
  64. Walker DA, Raynolds MK, Daniels FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA, Team C (2005) The circumpolar arctic vegetation map. J Veg Sci 16:267–282.  https://doi.org/10.1111/j.1654-1103.2005.tb02365.x CrossRefGoogle Scholar
  65. Zamin TJ, Côté SD, Tremblay JP, Grogan P (2017) Experimental warming alters migratory caribou forage quality. Ecol Appl 27:2061–2073.  https://doi.org/10.1002/eap.1590 CrossRefGoogle Scholar
  66. Zamin TJ, Grogan P (2012) Birch shrub growth in the low Arctic: the relative importance of experimental warming, enhanced nutrient availability, snow depth and caribou exclusion. Environ Res Lett 7:034027.  https://doi.org/10.1088/1748-9326/7/3/034027 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département de Biologie, Centre D’Études Nordiques and Caribou UngavaUniversité LavalQuébecCanada
  2. 2.Centre D’Études de La ForêtUniversité LavalQuébecCanada

Personalised recommendations