Advertisement

Polar Biology

, Volume 42, Issue 8, pp 1537–1547 | Cite as

Comparative populational study of Lepidonotothen larseni and L. nudifrons (Teleostei: Nototheniidae) from the Antarctic Peninsula and the South Shetland Islands, Antarctica

  • Mariana Y. Deli Antoni
  • Sergio M. Delpiani
  • Mariano González-CastroEmail author
  • Gabriela E. Blasina
  • María C. Spath
  • Gabriela E. Depiani
  • Fernando Y. Ashikaga
  • Vanessa P. Cruz
  • Claudio Oliveira
  • Juan M. Díaz de Astarloa
Original Paper

Abstract

Most Antarctic notothenioids exhibit clear geographic structure at large scales of spatial separation, generally between populations off different Ocean sectors. At smaller distances, there is great variation in the extent of population structuring. The Antarctic Peninsula and the archipelago of the South Shetland Islands are separated by a narrow strait of deep water (1000 m). Despite the proximity of these two areas, the confluence of water masses of different origins establishes frontal systems and local gyres which may preclude migration between shelf populations. Among the most abundant fish species in the area, the painted notothen Lepidonotothen larseni and the gaudy notothen Lepidonotothen nudifrons are two of the most numerous and widely distributed. In the present study, the genetic and morphological population structure of these closely related species was evaluated between the Antarctic Peninsula and the South Shetland Islands. Nine meristic counts, 18 inter-landmark distances and a mitochondrial DNA marker (D-loop) were analyzed. Populations of L. nudifrons were significantly different based on both, morphogeometric and genetic analyses, while L. larseni showed no population differentiation. The results showed a moderate structuring not correlated with distance between L. nudifrons populations off the Antarctic Peninsula and the South Shetland Islands. These findings provide evidence that differences between the studied species may be linked to key life history events, such as timing and location of egg development, hatching times and dispersal period of larvae. The present data suggest that notothenioid population structuring at regional scale may be related to a combination of life history traits, oceanographic features and local adaptation.

Keywords

Notothenioidei Antarctic fishes Southern ocean Landmark-based morphometry Mitochondrial DNA 

Notes

Acknowledgements

The authors thank Cristiane Kioko Shimabukuro Dias and Najila Nolie Catarine Dantas Cerqueira for their helpful assistance. This research was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (Project-FONDO IBOL Grant No. 3657/15), Universidad Nacional de Mar del Plata (EXA Grant No. 767/16), the National Science and Technology Council of the Brazilian Federal Government (CNPq Grant No. 306054/2006-0 to CO) and São Paulo State Foundation (FAPESP Grant No. 2016/09204-6 to CO). Mariana Y. Deli Antoni and María C. Spath were supported by CONICET postdoctoral fellowships. Matías Delpiani was supported by an external CONICET CPA fellowship (12020160100004CO). Thanks to Dr. Mario La Mesa and anonymous reviewers who provided valuable suggestions for improving a previous version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

300_2019_2540_MOESM1_ESM.pdf (94 kb)
Supplementary file1 (PDF 94 kb)
300_2019_2540_MOESM2_ESM.pdf (21 kb)
Supplementary file2 (PDF 20 kb)
300_2019_2540_MOESM3_ESM.pdf (94 kb)
Supplementary file3 (PDF 94 kb)
300_2019_2540_MOESM4_ESM.pdf (21 kb)
Supplementary file4 (PDF 21 kb)

References

  1. Agostini C, Patarnello T, Ashford JR, Torres JJ, Zane L, Papetti C (2015) Genetic differentiation in the ice dependent fish Pleuragramma antarctica along the Antarctic Peninsula. J Biogeogr 42:1103–1113.  https://doi.org/10.1111/jbi.12497 CrossRefGoogle Scholar
  2. Barrera-Oro E (2002) The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarct Sci 14:293–309.  https://doi.org/10.1017/S0954102002000111 CrossRefGoogle Scholar
  3. Begg GA, Hare JA, Sheehan DD (1999) The role of life history parameters as indicators of stock structure. Fish Res 43:141–163.  https://doi.org/10.1016/S0165-7836(99)00071-5 CrossRefGoogle Scholar
  4. Blasina G, Molina JM, Lopez Cazorla A, Díaz de Astarloa J (2016) Relationship between ecomorphology and trophic segregation in four closely related sympatric fish species (Teleostei, Sciaenidae). Comptes Rendus Biol 339:498–506.  https://doi.org/10.1016/j.crvi.2016.07.003 CrossRefGoogle Scholar
  5. Blasina G, Lopez Cazorla A, Deli Antoni M, Bruno D, Delpiani M, Díaz de Astarloa J (2017) Ontogenetic changes in the feeding strategy of Lepidonotothen nudifrons (Pisces, Nototheniidae) off the South Shetland Islands and the Antarctic Peninsula. Polar Res 36:1331558.  https://doi.org/10.1080/17518369.2017.1331558 CrossRefGoogle Scholar
  6. Bushula T, Pakhomov EA, Kaehler S, Davis S, Kalin RM (2005) Diet and daily ration of two nototheniid fish on the shelf of the sub-Antarctic Prince Edward Islands. Polar Biol 28:585–593.  https://doi.org/10.1007/s00300-005-0729-2 CrossRefGoogle Scholar
  7. Cadrin SX (2000) Advances in morphometric identification of fishery stocks. Rev Fish Biol Fish 10:91–112.  https://doi.org/10.1023/A:1008939104413 CrossRefGoogle Scholar
  8. Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11:212–218.  https://doi.org/10.1016/0169-5347(96)10029-X CrossRefGoogle Scholar
  9. Curcio N, Tombari A, Capitanio F (2014) Otolith morphology and feeding ecology of an Antarctic nototheniid Lepidonotothen larseni. Antarct Sci 26(2):124–132.  https://doi.org/10.1017/S0954102013000394 CrossRefGoogle Scholar
  10. Damerau M, Salzburger W, Hanel R (2014) Population genetic structure of Lepidonotothen larseni revisited: cytb and microsatellites suggest limited connectivity in the Southern Ocean. Mar Ecol Prog Ser 517:251–263.  https://doi.org/10.3354/meps11061 CrossRefGoogle Scholar
  11. Damerau M, Matschiner M, Salzburger W, Hanel R (2012) Comparative population genetics of seven notothenioid fish species reveals high levels of gene flow along ocean currents in the southern Scotia Arc, Antarctica. Polar Biol 35:1073–1086.  https://doi.org/10.1007/s00300-012-1155-x CrossRefGoogle Scholar
  12. DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. J.L.B Smith Institute of Ichthyology, Grahamstown, pp 279–331Google Scholar
  13. DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater, and anadromous fishes compared with other animals. J Fish Biol 56:461–473.  https://doi.org/10.1111/j.1095-8649.2000.tb00748.x CrossRefGoogle Scholar
  14. Dornburg A, Federman S, Eytan RI, Near TJ (2016) Cryptic species diversity in sub-Antarctic islands: a case study of Lepidonotothen. Mol Phylogenet Evol 104:32–43.  https://doi.org/10.1016/j.ympev.2016.07.013 CrossRefGoogle Scholar
  15. Duhamel G, Ozouf-Costaz C, Cattaneo-Berrebi G, Berrebi P (1995) Interpopulation relationships in two species of Antarctic fish Notothenia rossii and Champsocephalus gunnari from the Kerguelen Islands: an allozyme study. Antarct Sci 7(4):351–356.  https://doi.org/10.1017/S0954102095000496 CrossRefGoogle Scholar
  16. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107.  https://doi.org/10.1007/s00300-004-0667-4 CrossRefGoogle Scholar
  17. Eastman JT, Eakin RR (2000) An updated species list for notothenioid fish (Perciformes; Notothenioidei), with comments on Antarctic species. J Appl Ichthyol 48:11–20Google Scholar
  18. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491Google Scholar
  19. González-Castro M, Ibáñez-Aguirre AL, Heras S, Roldán MI, Cousseau MB (2012) Assessment of lineal versus landmark-based morphometry for discriminating species of Mugilidae (Actinopterygii). Zool Stud 51(8):1515–1528Google Scholar
  20. González-Castro M, Ghasemzadeh J (2016) Morphology and morphometry based taxonomy of Mugillidae. In: Crosetti D, Blaber S (eds) Biology, ecology and culture of Grey Mullet (Mugillidae). CRC Press, Taylor and Francis Group, Boca Ratón, pp 1–21Google Scholar
  21. González-Castro M, Rosso JJ, Mabragaña R, Díaz de Astarloa JM (2016) Surfing among species, populations and morphotypes: inferring boundaries between two species of new world silversides (Atherinopsidae). C R Biol 399(1):10–29.  https://doi.org/10.1016/j.crvi.2015.11.004 CrossRefGoogle Scholar
  22. Hartl D, Clark A (2007) Principles of population genetics, 4th edn. Sinauer Associates Inc, MassachusettsGoogle Scholar
  23. Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362.  https://doi.org/10.1111/j.1467-2979.2008.00299.x CrossRefGoogle Scholar
  24. Hourigan TF, Radtke RL (1989) Reproduction of the Antarctic fish Nototheniops nudifrons. Mar Biol 100:277–283.  https://doi.org/10.1007/BF00391969 CrossRefGoogle Scholar
  25. Huneke WGC, Huhn O, Schröeder M (2016) Water masses in the Bransfield Strait and adjacent seas, austral summer 2013. Polar Biol 39:789–798.  https://doi.org/10.1007/s00300-016-1936-8 CrossRefGoogle Scholar
  26. Hureau JC (1994) The significance of fish in the marine Antarctic ecosystems. Polar Biol 14:307–313CrossRefGoogle Scholar
  27. Ihssen PE, Booke HE, Casselman JM, McGlade JM, Payne NR, Utter FM (1981) Stock identification: materials and methods. Can J Fish Aquat Sci 38:1838–1855.  https://doi.org/10.1139/f81-230 CrossRefGoogle Scholar
  28. Ivanova NV, deWaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002.  https://doi.org/10.1111/j.1471-8286.2006.01428.x CrossRefGoogle Scholar
  29. Jones CD, Anderson E, Balushkin AV, Duhamel G, Eakin RR, Eastman JT, Kuhn KL, Lecointre G, Near TJ, North AW, Stein DL, Vacchi M, Detrich HW III (2008) Diversity, relative abundance, new locality records and population structure of Antarctic demersal fishes from the northern Scotia Arc islands and Bouvetøya. Polar Biol 31:1481–1497.  https://doi.org/10.1007/s00300-008-0489-x CrossRefGoogle Scholar
  30. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649.  https://doi.org/10.1093/bioinformatics/bts199 CrossRefGoogle Scholar
  31. Kellermann A (1990) Catalogue of early life stages of Antarctic notothenioid fishes. Ber Polarforsch 67:45–136Google Scholar
  32. Kock KH (1992) Antarctic fish and fisheries. Cambridge University Press, CambridgeGoogle Scholar
  33. Kock KH, Kellermann A (1991) Review. Reproduction in Antarctic notothenioid fish. Antarct Sci 3(2):125–150.  https://doi.org/10.1017/S0954102091000172 CrossRefGoogle Scholar
  34. Kock KH, Jones CD (2005) Fish stocks in the southern Scotia Arc region—a review and prospects for future research. Rev Fish Sci 13:75–108.  https://doi.org/10.1080/10641260590953900 CrossRefGoogle Scholar
  35. Konecki JT, Targett TE (1989) Eggs and larvae of Nototheniops larseni from the spongocoel of a hexactinellid sponge near Hugo Island, Antarctic Peninsula. Polar Biol 10:197–198CrossRefGoogle Scholar
  36. Kuhn KL, Gaffney PM (2006) Preliminary assessment of population structure in the mackerel icefish (Champsocephalus gunnari). Polar Biol 29:927–935.  https://doi.org/10.1007/s00300-006-0134-5 CrossRefGoogle Scholar
  37. La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338.  https://doi.org/10.1007/s00300-004-0599-z CrossRefGoogle Scholar
  38. La Mesa M, La Mesa G, Catalano B, Jones CD (2016) Spatial distribution pattern and physical–biological interactions in the larval notothenioid fish assemblages from the Bransfield Strait and adjacent waters. Fish Oceanogr 25:624–636.  https://doi.org/10.1111/fog.12178 CrossRefGoogle Scholar
  39. La Mesa M, Riginella E, Catalano B, Jones CD, Mazzoldi C (2017) Maternal contribution to spawning and early life-history strategies of the genus Lepidonotothen (Nototheniidae, Perciformes) along the southern Scotia Arc. Polar Biol 40:1441–1450.  https://doi.org/10.1007/s00300-016-2068-x CrossRefGoogle Scholar
  40. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefGoogle Scholar
  41. Lleonart J, Salat J, Torres GJ (2000) Removing allometric effects of body size in morphological analysis. J Theor Biol 205(1):85–93.  https://doi.org/10.1006/jtbi.2000.2043 CrossRefGoogle Scholar
  42. Llompart F, Delpiani M, Lattuca E, Delpiani G, Cruz-Jiménez A, Orlando P, Ceballos S, Díaz de Astarloa JM, Vanella F, Fernández D (2015) Spatial patterns of summer demersal fish assemblages around the Antarctic Peninsula and South Shetland Islands. Antarct Sci 27:109–117.  https://doi.org/10.1017/S0954102014000352 CrossRefGoogle Scholar
  43. Lombarte A, Lleonart J (1993) Otolith size changes related with body growth, habitat depth and temperature. Environ Biol Fishes 37(3):297–306.  https://doi.org/10.1007/bf00004637 CrossRefGoogle Scholar
  44. Marcil J, Swain DP, Hutchings JA (2006) Genetic and environmental components of phenotypic variation in body shape among populations of Atlantic cod (Gadus morhua L.). Biol J Linn Soc 88(3):351–365.  https://doi.org/10.1111/j.1095-8312.2006.00656.x CrossRefGoogle Scholar
  45. Matschiner M, Hanel R, Salzburger W (2009) Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol Ecol 18:2574–2587.  https://doi.org/10.1111/j.1365-294X.2009.04220.x CrossRefGoogle Scholar
  46. Miya T, Gon O, Mwale M, Poulin E (2016) Molecular systematics and taxonomic status of three latitudinally widespread nototheniid (Perciformes: Notothenioidei) fishes from the Southern Ocean. Zootaxa 4061(4):381–396.  https://doi.org/10.11646/zootaxa.4061.4.4 CrossRefGoogle Scholar
  47. Moore CS, Ruocchio MJ, Blakeslee AMH (2018) Distribution and population structure in the naked goby Gobiosoma bosc (Perciformes: Gobiidae) along a salinity gradient in two western Atlantic estuaries. PeerJ 6:e5380.  https://doi.org/10.7717/peerj.5380 CrossRefGoogle Scholar
  48. O'Reilly PT, Canino MF, Bailey KM, Bentzen P (2004) Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol Ecol 13:1799–1814.  https://doi.org/10.1111/j.1365-294X.2004.02214.x CrossRefGoogle Scholar
  49. Papetti C, Susana E, La Mesa M, Kock KH, Patarnello T, Zane L (2007) Microsatellite analysis reveals genetic differentiation between year-classes in the icefish Chaenocephalus aceratus at South Shetlands and Elephant Island. Polar Biol 30:1605–1613.  https://doi.org/10.1007/s00300-007-0325-8 CrossRefGoogle Scholar
  50. Papetti C, Susana E, Patarnello T, Zane L (2009) Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands. Mar Ecol Prog Ser 376:269–281.  https://doi.org/10.3354/meps07831 CrossRefGoogle Scholar
  51. Papetti C, Pujolar JM, Mezzavilla M, La Mesa M, Rock J, Zane L, Patarnello T (2012) Population genetic structure and gene flow patterns between populations of the Antarctic icefish Chionodraco rastrospinosus. J Biogeogr 39:1361–1372.  https://doi.org/10.1111/j.1365-2699.2011.02682.x CrossRefGoogle Scholar
  52. Papetti C, Windisch HS, La Mesa M, Lucassen M, Marshall C, Lamare MD (2016) Non-Antarctic notothenioids: past phylogenetic history and contemporary phylogeographic implications in the face of environmental changes. Mar Genomics 25:1–9.  https://doi.org/10.1016/j.margen.2015.11.007 CrossRefGoogle Scholar
  53. Pineda J, Hare J, Sponaugle S (2007) Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20(3):22–39CrossRefGoogle Scholar
  54. Purcell JFH, Cowen RK, Hughes CR, Williams DA (2006) Weak genetic structure indicates strong dispersal limits: a tale of two coral reef fish. Proc R Soc B 273:1483–1490.  https://doi.org/10.1098/rspb.2006.3470 CrossRefGoogle Scholar
  55. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  57. Riginos C, Douglas KE, Jin Y, Shanahan DF, Treml EA (2011) Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography 34:566–575.  https://doi.org/10.1111/j.1600-0587.2010.06511.x CrossRefGoogle Scholar
  58. Rousset F (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  59. Ruzicka JJ (1996) Comparison of the two alternative early life-history strategies of the Antarctic fishes Gobionotothen gibberifrons and Lepidonotothen larseni. Mar Ecol Prog Ser 133:29–41.  https://doi.org/10.3354/meps133029 CrossRefGoogle Scholar
  60. Sahade R, Lagger C, Torre L, Momo F, Monien P, Schloss I, Barnes DKA, Servetto N, Tarantelli S, Tatián M, Zamboni N, Abele D (2015) Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv 1:e1500050.  https://doi.org/10.1126/sciadv.1500050 CrossRefGoogle Scholar
  61. Sanchez S, Dettaï A, Bonillo C, Ozouf-Costaz C, Detrich HW III, Lecointre G (2007) Molecular and morphological phylogenies of the Antarctic teleostean family Nototheniidae, with emphasis on the Trematominae. Polar Biol 30:155–166.  https://doi.org/10.1007/s00300-006-0170-1 CrossRefGoogle Scholar
  62. Sangra P, Gordo C, Hernández-Arencibia M, Marrero-Díaz A, Rodríguez-Santana A, Stegner A, Martínez-Marrero A, Pelegrí JL, Pichon T (2011) The Bransfield current system. Deep Sea Res Part I Oceanogr Res Pap 58:390–402.  https://doi.org/10.1016/j.dsr.2011.01.011 CrossRefGoogle Scholar
  63. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.0. A software for population genetic analysis. Genetics and Biometry Laboratory, University of Geneva, GenevaGoogle Scholar
  64. Schunter C, Carreras-Carbonell J, MacPherson E, Tintore J, Vidal-Vijande E, Pascual A, Guidetti P, Pascual M (2011) Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol Ecol 20:5167–5181.  https://doi.org/10.1111/j.1365-294X.2011.05355.x CrossRefGoogle Scholar
  65. Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385.  https://doi.org/10.1086/BBLv216n3p373 CrossRefGoogle Scholar
  66. Sheskin DJ (2004) Handbook of parametric and nonparametric statistical procedures, 3rd edn. Chapman & Hall/CRC, Boca RatonCrossRefGoogle Scholar
  67. Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910.  https://doi.org/10.1111/j.1558-5646.1995.tb02325.x CrossRefGoogle Scholar
  68. Sosinski J (1985) Some data on taxonomy and biology of Antarctic icefish, Champsocephalus gunnari Lönnberg 1905. Acta Ichthyol Piscat 15:3–54CrossRefGoogle Scholar
  69. Strauss RE, Bookstein FL (1982) The truss: body form reconstruction in morphometrics. Syst Zool 31(2):113–135.  https://doi.org/10.2307/2413032 CrossRefGoogle Scholar
  70. Swain DP, Foote CJ (1999) Stocks and chameleons: the use of phenotypic variation in stock identification. Fish Res 43:113–128.  https://doi.org/10.1016/S0165-7836(99)00069-7 CrossRefGoogle Scholar
  71. Van de Putte AP, Janko K, Kasparova E, Maes GE, Rock J, Koubbi P, Volckaert FAM, Choleva L, Fraser KPP, Smykla J, Van Houdt JKJ, Marshall C (2012) Comparative phylogeography of three trematomid fishes reveals contrasting genetic structure patterns in benthic and pelagic species. Mar Genomics 8:23–34.  https://doi.org/10.1016/j.margen.2012.05.002 CrossRefGoogle Scholar
  72. Volckaert FA, Rock J, Van de Putte AP (2012) Connectivity and molecular ecology of Antarctic fishes. In: Prisco G, Verde C (eds) Adaptation and evolution in marine environments from pole to pole. Springer, Berlin, pp 75–96CrossRefGoogle Scholar
  73. Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44:213–232.  https://doi.org/10.1111/j.1095-8649.1994.tb01200.x CrossRefGoogle Scholar
  74. White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc R Soc B 277:1685–1694.  https://doi.org/10.1098/rspb.2009.2214 CrossRefGoogle Scholar
  75. Young EF, Rock J, Meredith MP, Belchier M, Murphy EJ, Carvalho GR (2012) Physical and behavioral influences on larval fish retention: contrasting patterns in two Antarctic fishes. Mar Ecol Prog Ser 465:201–215.  https://doi.org/10.3354/meps09908 CrossRefGoogle Scholar
  76. Young EF, Belchier M, Hauser L, Horsburgh GJ, Meredith MP, Murphy EJ, Pascoal S, Rock J, Tysklind N, Carvalho GR (2015) Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species. Evol Appl 8:486–509.  https://doi.org/10.1111/eva.12259 CrossRefGoogle Scholar
  77. Zane L, Marcato S, Bargelloni L, Bortolotto E, Papetti C, Simonato M, Varotto V, Patarnello T (2006) Demographic history and population structure of the Antarctic silverfish Pleuragramma antarcticum. Mol Ecol 15:499–511.  https://doi.org/10.1111/j.1365-294X.2006.03105.x CrossRefGoogle Scholar
  78. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice Hall International Inc, LondresGoogle Scholar
  79. Zhou M, Niller PP, Zhu Y, Dorland RD (2006) The western boundary current in the Bransfield Strait, Antarctica. Deep Sea Res Part I Oceanogr Res 53:1244–1252.  https://doi.org/10.1016/j.dsr.2006.04.003 CrossRefGoogle Scholar
  80. Zuur AF, Ieno EN, Smith GM (2007) Analyzing ecological data. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Biotaxonomía Morfológica y Molecular de Peces (BIMOPE)Instituto de Investigaciones Marinas y Costeras (IIMyC, CONICET-UNMdP)Mar del PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Laboratorio de Vertebrados, Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
  4. 4.Departamento de Morfologia, Instituto de BiociênciasUniversidade Estadual PaulistaBotucatuBrazil

Personalised recommendations