Integrated taxonomy combining morphological and molecular biological analyses of soil nematodes from maritime Antarctica

  • Hiroshi Kagoshima
  • Rolf Maslen
  • Kenji Kito
  • Satoshi Imura
  • Hironori Niki
  • Peter ConveyEmail author
Original Paper


Nematodes are one of the key organisms in the terrestrial ecosystems of Antarctica. Their exceptional cryptobiotic adaptations against freezing and desiccation stress have attracted significant research attention. However, even today, relatively little is known about the biology of nematodes across this continent, especially in terms of their biodiversity and distribution. To address such fundamental research areas, correct classification of Antarctic nematodes is a necessary underpinning. Until recently, morphological examination has been the only established method available, and this remains challenging even for experts. Advances in molecular biological techniques now provide a complementary approach to nematode classification, but as yet have largely not been applied to the Antarctic fauna. In this study we initiate development of cataloguing of Antarctic nematodes using both morphological and molecular information from individual worms. We collected nematode samples from islands in maritime Antarctica (Signy, Adelaide and Léonie Islands; a latitudinal range between the South Orkney Islands and Marguerite Bay), and classified them by DNA sequence obtained from morphologically-determined samples. We obtained small subunit ribosomal RNA gene (SSU rDNA) sequence data from seven major maritime Antarctic nematode species, which will permit future identification of these species without the requirement for detailed morphological taxonomic analyses. We also trialled the application of molecular analyses to morphologically unidentified samples from King George Island, thereby obtaining support for our approach through the identification of samples with identical sequences. This approach provides baseline information for future studies of Antarctic nematodes.



We thank Dr. Masaki Uchida and Dr. Hiroshi Kanda for providing Antarctic moss samples, Dr. Megumu Tsujimoto for discussion, Mr. Tadasu Shin-i, Dr. Hideaki Hiraki, Dr. Kazuho Ikeo and Dr. Chester Sands for advice on bioinformatic analysis, and Ms. Junko Kajiwara for excellent technical assistance. We greatly appreciate the generous support of Dr. Yuji Kohara for molecular analysis. British Antarctic Survey field staff are thanked for supporting the fieldwork on Signy, Léonie and Adelaide Islands, and Laura Gerrish of the BAS Mapping and Geographic Information Centre for preparing the maps in Fig. 1. HK was supported by JSPS KAKENHI Grant Numbers 23510239, 15K06906. SI and HK were supported by JSPS KAKENHI 23247012. PC is supported by NERC core funding to the BAS ‘Biodiversity, Evolution and Adaptation’ Team. This paper also contributes to the SCAR AntEco research programme. Anonymous reviewers and the Editor are thanked for constructive comments helping to improve and focus the manuscript.

Author contributions

HK and PC led the project; HK performed all the molecular analyses of Antarctic nematodes, and wrote the manuscript with PC; RM morphologically identified most of the Antarctic nematodes; KK morphologically identified a nematode from King George Island; SI and HN supervised molecular examination by HK and advised on the manuscript.

Supplementary material

300_2019_2482_MOESM1_ESM.docx (24 kb)
Supplementary file1 (DOCX 24 kb)
300_2019_2482_MOESM2_ESM.docx (28 kb)
Supplementary file2 (DOCX 28 kb)
300_2019_2482_MOESM3_ESM.docx (25 kb)
Supplementary file3 (DOCX 24 kb)
300_2019_2482_MOESM4_ESM.docx (24 kb)
Supplementary file4 (DOCX 23 kb)
300_2019_2482_MOESM5_ESM.docx (61 kb)
Supplementary file5 (DOCX 61 kb)
300_2019_2482_MOESM6_ESM.docx (28 kb)
Supplementary file6 (DOCX 28 kb)
300_2019_2482_MOESM7_ESM.docx (20 kb)
Supplementary file7 (DOCX 19 kb)
300_2019_2482_MOESM8_ESM.docx (22 kb)
Supplementary file8 (DOCX 22 kb)
300_2019_2482_MOESM9_ESM.docx (20 kb)
Supplementary file9 (DOCX 20 kb)
300_2019_2482_MOESM10_ESM.docx (20 kb)
Supplementary file10 (DOCX 20 kb)
300_2019_2482_MOESM11_ESM.docx (19 kb)
Supplementary file11 (DOCX 18 kb)
300_2019_2482_MOESM12_ESM.docx (26 kb)
Supplementary file12 (DOCX 25 kb)


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. Andrássy I (1998) Nematodes in the sixth continent. J Nematode Morphol Syst 1:107–186Google Scholar
  3. Armenteros M, Rojas-Corzo A, Ruiz-Abierno A, Derycke S, Backeljau T, Decraemer W (2014) Systematics and DNA barcoding of free-living marine nematodes with emphasis on tropical desmodorids using nuclear SSU rDNA and mitochondrial COI sequences. Nematology 16:979–989CrossRefGoogle Scholar
  4. Bargelloni L, Ritchie PA, Patarnello T, Battaglia B, Lambert DM, Meyer A (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11:854–863Google Scholar
  5. Barnes DKA, Hodgson DA, Convey P, Allen C, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Glob Ecol Biogeogr 15:121–142CrossRefGoogle Scholar
  6. Barrett JE, Virginia RA, Wall DH, Byron JA (2008) Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem. Glob Chang Biol 14:1734–1744CrossRefGoogle Scholar
  7. Blaxter ML (2001) Molecular analysis of nematode evolution. In: Kennedy MW, Harnett W (eds) Parasitic nematodes: molecular biology, biochemistry, and immunology. CAB International, London, pp 1–24Google Scholar
  8. Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75CrossRefGoogle Scholar
  9. Blume HP, Kuhn D, Bölter M (2002) Soils and soilscapes. In: Beyer L, Bölter M (eds) Geoecology of antarctic ice-free coastal landscapes. Springer, Berlin, pp 91–113CrossRefGoogle Scholar
  10. Bölter M, Blume HP, Erlenkeuser H (1994) Pedologic, isotopic and microbiological properties of Antarctic soils. Polarforschung 64:1–7Google Scholar
  11. Burton-Johnson A, Black M, Fretwell PT, Kaluza-Gilbert J (2016) An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10:1665–1677CrossRefGoogle Scholar
  12. Chown SL, Convey P (2007) Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philos Trans R Soc Lond B 362:2307–2331CrossRefGoogle Scholar
  13. Convey P (2017) Antarctic ecosystems. Reference module in life sciences. Elsevier, Amsterdam, pp 179–188Google Scholar
  14. Convey P, Gibson JA, Hillenbrand CD, Hodgson DA, Pugh PJ, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev Camb Philos Soc 83:103–117CrossRefGoogle Scholar
  15. Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand C-D, Barnes DKA, Clarke A, Pugh PJA, Linse K, Cary SC (2009) Exploring biological constraints on the glacial history of Antarctica. Quat Sci Rev 28:3035–3048CrossRefGoogle Scholar
  16. Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V, Ducklow HW, Frati F, Green TGA, Gordon S, Griffiths HJ, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons WB, Mcminn A, Morley SA, Peck LS, Quesada A, Robinson SA, Schiaparelli S, Wall DH (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244CrossRefGoogle Scholar
  17. De Conto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249CrossRefGoogle Scholar
  18. De Ley P, De Ley IT, Morris K, Abebe E, Mundo-Ocampo M, Yoder M, Heras J, Waumann D, Rocha-Olivares A, Jay Burr AH, Baldwin JG, Thomas WK (2005) An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philos Trans R Soc Lond B 360:1945–1958CrossRefGoogle Scholar
  19. de Tomasel CM, Adams BJ, Tomasel FG, Wall DH (2013) The Life cycle of the Antarctic Nematode Plectus murrayi under laboratory conditions. J Nematol 45:39–42Google Scholar
  20. Dong K, Moroenyane I, Tripathi B, Kerfahi D, Takahashi K, Yamamoto N, An C, Cho H, Adams J (2017) Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan. Sci Rep 7: 3028CrossRefGoogle Scholar
  21. Elshishka M, Lazarova S, Radoslavov G, Hristov P, Peneva VK (2015) New data on two remarkable Antarctic species Amblydorylaimus isokaryon (Loof, 1975) Andrassy, 1998 and Pararhyssocolpus paradoxus (Loof, 1975), gen. n., comb. n. (Nematoda, Dorylaimida). Zookeys 25–68Google Scholar
  22. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850CrossRefGoogle Scholar
  23. Gojobori T, Ishii K, Nei M (1982) Estimation of average number of nucleotide substitution when the rate of substitution varies with nucleotide. J Mol Evol 18:414–423CrossRefGoogle Scholar
  24. Greenslade P (1995) Collembola from the Scotia Arc and Antarctic Peninsula including descriptions of two new species and notes on biogeography. Pol Pismo Entomol 64:305–319Google Scholar
  25. Handoo ZA, Palomares-Rius JE, Cantalapiedra-Navarrete C, Liebanas G, Subbotin SA, Castillo P (2014) Integrative taxonomy of the stunt nematodes of the genera Bitylenchus and Tylenchorhynchus (Nematoda, Telotylenchidae) with description of two new species and a molecular phylogeny. Zool J Linn Soc 172:231–264CrossRefGoogle Scholar
  26. Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades. Mol Biol Evol 23:1792–1800CrossRefGoogle Scholar
  27. Hughes K, Ott S, Bölter M, Convey P (2006) Colonisation processes. Springer, DordrechtCrossRefGoogle Scholar
  28. Iakovenko NS, Smykla J, Convey P, Kaspšarová E, Kozeretska IA, Trokhymets V, Dykyy I, Plewka M, Devetter M, Duriš Z, Janko K (2015) Antarctic bdelloid rotifers: diversity, endemism and evolution. Hydrobiologia 761:5–43CrossRefGoogle Scholar
  29. Kagoshima H, Kito K, Aizu T, Shin-i T, Kanda H, Kobayashi S, Toyoda A, Fujiyama A, Kohara Y, Convey P, Niki H (2012) Multi-decadal survival of an Antarctic nematode, Plectus murrayi, in a –20 °C stored moss sample. Cryo Lett 33:280–288Google Scholar
  30. Kociolek JP, Kopalová K, Hamsher SE, Kohler TJ, Van de Vijver B, Convey P, McKnight DM (2017) Freshwater diatom biogeography and the genus Luticola: an extreme case of endemism in Antactica. Polar Biol 40:1185–1196CrossRefGoogle Scholar
  31. Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic: clues to history? Soil Biol Biochem 38:3141–3151CrossRefGoogle Scholar
  32. Meldal BH, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJ (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol phylogenetics Evol 42:622–636CrossRefGoogle Scholar
  33. Mulvey RH (1978) Predaceous nematodes of the family Mononchidae from the Mackenzie and Porcupine river systems and Somerset Island, N.W.T. Canada. Can J Zool 56:1847–1868CrossRefGoogle Scholar
  34. Nadler SA, De Ley P, Mundo-Ocampo M, Smythe AB, Patricia Stock S, Bumbarger D, Adams BJ, De Ley IT, Holovachov O, Baldwin JG (2006) Phylogeny of Cephalobina (Nematoda): molecular evidence for recurrent evolution of probolae and incongruence with traditional classifications. Mol Phylogenetics Evol 40:696–711CrossRefGoogle Scholar
  35. Newsham KK, Maslen NR, McInnes SJ (2006) Survival of antarctic soil metazoans at –80 °C for six years. Cryo Lett 27:291–294Google Scholar
  36. Nunn GB (1992) Nematode molecular evolution: an investigation of evolutionary patterns among nematodes based upon DNA sequences. PhD Dissertation. University of Nottingham, UKGoogle Scholar
  37. Plasterk RH (1995) Reverse genetics: from gene sequence to mutant worm. Methods Cell Biol 48:59–80CrossRefGoogle Scholar
  38. Porazinska DL, Wall DH (2002) Population age structure of nematodes in the Antarctic dry valleys: perspectives on time, space, and habitat suitability. Arctic Antarct Alpine Res 34:159–168CrossRefGoogle Scholar
  39. Powers TO, Todd TC, Burnell AM, Murray PCB, Fleming CC, Szalanski AL, Adams BA, Harris TS (1997) The rDNA internal transcribed spacer region as a taxonomic marker for nematodes. J Nematol 29:441–450Google Scholar
  40. Pugh PJA (1993) A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic islands and the Southern Ocean. J Nat Hist 27:232–421CrossRefGoogle Scholar
  41. Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeogr 35:2176–2186CrossRefGoogle Scholar
  42. Raymond MR, Wharton DA, Marshall CJ (2014) Nematodes from the Victoria Land coast, Antarctica and comparisons with cultured Panagrolaimus davidi. Antarct Sci 26:15–22CrossRefGoogle Scholar
  43. Ruvolo M (1997) Molecular phylogeny of the hominoids: inferences from multiple independent DNA sequence data sets. Mol Biol Evol 14:248–265CrossRefGoogle Scholar
  44. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  45. Sanchez-Monge A, Flores L, Salazar L, Hockland S, Bert W (2015) An updated list of the plants associated with plant-parasitic Aphelenchoides (Nematoda: Aphelenchoididae) and its implications for plant-parasitism within this genus. Zootaxa 4013:207–224CrossRefGoogle Scholar
  46. Sands CJ, Convey P, Linse K, McInnes SJ (2008) Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using the Tardigrada. BMC Ecol 8:7CrossRefGoogle Scholar
  47. Shatilovich AV, Tchesunov AV, NeretinaI TN, Grabarnik IP, Gubin SV, Vishnivetskaya TA, Onstott TC, Rivkina EM (2018) Viable Nematodes from late Pleistocene Permafrost of the Kolyma river lowland. Dokl Biol Sci 480:100–102CrossRefGoogle Scholar
  48. Smiley RW, Merrifield K, Patterson LM, Whittaker RG, Gourlie JA, Easley SA (2004) Nematodes in dryland field crops in the semiarid pacific northwest United States. J Nematol 36:54–68Google Scholar
  49. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  50. Van den Berg E, Tiedt LR, Subbotin SA (2014) Morphological and molecular characterization of several Paratylenchus Micoletzky, 1922 (Tylenchida: Paratylenchidae) species from South Africa and USA with some taxonomic notes. Nematology 16:323–358CrossRefGoogle Scholar
  51. Van den Berg E, Harris JM (1996) Rotylenchus capensis Van den Berg & Heyns (Tylenchida: Hoplolaimidae) in soils of island inland nunataks in western Dronning Maud Land, Antarctica. Afr Plant Prot 2:19–24Google Scholar
  52. van Vuuren BJ, Lee JE, Convey P, Chown SL (2018) Conservation implications of spatial genetic structure in two species of oribatid mites from the Antarctic Peninsula and the Scotia Arc. Antarct Sci 30:105–114CrossRefGoogle Scholar
  53. Velasco-Castrillón A, Gibson JA, Stevens MI (2014a) A review of current Antarctic limno-terrestrial microfauna. Polar Biol 37:1517–1531CrossRefGoogle Scholar
  54. Velasco-Castrillón A, Schultz MB, Colombo F, Gibson JA, Davies KA, Austin AD, Stevens MI (2014b) Distribution and diversity of soil microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS ONE 9:e87529CrossRefGoogle Scholar
  55. Velasco-Castrillón A, McInnes SJ, Schultz MB, Arróniz-Crespo M, D’Haese CA, Gibson JAE, Adams BJ, Page TJ, Austin AD, Cooper SJB, Stevens MI (2015) Mitochondrial DNA analyses reveal widespread tardigrade diversity in Antarctica. Invertebr Syst 29:578–590CrossRefGoogle Scholar
  56. Velasco-Castrillón A, Stevens MI (2014) Morphological and molecular diversity at a regional scale: A step closer to understanding Antarctic nematode biogeography. Soil Biol Biochem 70:272–284CrossRefGoogle Scholar
  57. Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willems A, Peeters K, Van de Vijver B, De Wever A, Leliaertf F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113CrossRefGoogle Scholar
  58. Wharton DA (2002) Life at the Limits: Organisms in extreme environment. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Transdisciplinary Research Integration CenterResearch Organization of Information and Systems (ROIS)TokyoJapan
  2. 2.National Institute of GeneticsROISShizuokaJapan
  3. 3.British Antarctic SurveyNERCCambridgeUK
  4. 4.Sapporo Medical UniversitySapporoJapan
  5. 5.National Institute of Polar ResearchROISTachikawaJapan
  6. 6.Department of Polar ScienceSOKENDAI (The Graduate University for Advanced Studies)TachikawaJapan

Personalised recommendations