Skip to main content

Advertisement

Log in

Integrated taxonomy combining morphological and molecular biological analyses of soil nematodes from maritime Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Nematodes are one of the key organisms in the terrestrial ecosystems of Antarctica. Their exceptional cryptobiotic adaptations against freezing and desiccation stress have attracted significant research attention. However, even today, relatively little is known about the biology of nematodes across this continent, especially in terms of their biodiversity and distribution. To address such fundamental research areas, correct classification of Antarctic nematodes is a necessary underpinning. Until recently, morphological examination has been the only established method available, and this remains challenging even for experts. Advances in molecular biological techniques now provide a complementary approach to nematode classification, but as yet have largely not been applied to the Antarctic fauna. In this study we initiate development of cataloguing of Antarctic nematodes using both morphological and molecular information from individual worms. We collected nematode samples from islands in maritime Antarctica (Signy, Adelaide and Léonie Islands; a latitudinal range between the South Orkney Islands and Marguerite Bay), and classified them by DNA sequence obtained from morphologically-determined samples. We obtained small subunit ribosomal RNA gene (SSU rDNA) sequence data from seven major maritime Antarctic nematode species, which will permit future identification of these species without the requirement for detailed morphological taxonomic analyses. We also trialled the application of molecular analyses to morphologically unidentified samples from King George Island, thereby obtaining support for our approach through the identification of samples with identical sequences. This approach provides baseline information for future studies of Antarctic nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrássy I (1998) Nematodes in the sixth continent. J Nematode Morphol Syst 1:107–186

    Google Scholar 

  • Armenteros M, Rojas-Corzo A, Ruiz-Abierno A, Derycke S, Backeljau T, Decraemer W (2014) Systematics and DNA barcoding of free-living marine nematodes with emphasis on tropical desmodorids using nuclear SSU rDNA and mitochondrial COI sequences. Nematology 16:979–989

    Article  Google Scholar 

  • Bargelloni L, Ritchie PA, Patarnello T, Battaglia B, Lambert DM, Meyer A (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11:854–863

    CAS  PubMed  Google Scholar 

  • Barnes DKA, Hodgson DA, Convey P, Allen C, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Glob Ecol Biogeogr 15:121–142

    Article  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Byron JA (2008) Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem. Glob Chang Biol 14:1734–1744

    Article  Google Scholar 

  • Blaxter ML (2001) Molecular analysis of nematode evolution. In: Kennedy MW, Harnett W (eds) Parasitic nematodes: molecular biology, biochemistry, and immunology. CAB International, London, pp 1–24

    Google Scholar 

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  CAS  PubMed  Google Scholar 

  • Blume HP, Kuhn D, Bölter M (2002) Soils and soilscapes. In: Beyer L, Bölter M (eds) Geoecology of antarctic ice-free coastal landscapes. Springer, Berlin, pp 91–113

    Chapter  Google Scholar 

  • Bölter M, Blume HP, Erlenkeuser H (1994) Pedologic, isotopic and microbiological properties of Antarctic soils. Polarforschung 64:1–7

    Google Scholar 

  • Burton-Johnson A, Black M, Fretwell PT, Kaluza-Gilbert J (2016) An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10:1665–1677

    Article  Google Scholar 

  • Chown SL, Convey P (2007) Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philos Trans R Soc Lond B 362:2307–2331

    Article  Google Scholar 

  • Convey P (2017) Antarctic ecosystems. Reference module in life sciences. Elsevier, Amsterdam, pp 179–188

    Google Scholar 

  • Convey P, Gibson JA, Hillenbrand CD, Hodgson DA, Pugh PJ, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev Camb Philos Soc 83:103–117

    Article  PubMed  Google Scholar 

  • Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand C-D, Barnes DKA, Clarke A, Pugh PJA, Linse K, Cary SC (2009) Exploring biological constraints on the glacial history of Antarctica. Quat Sci Rev 28:3035–3048

    Article  Google Scholar 

  • Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V, Ducklow HW, Frati F, Green TGA, Gordon S, Griffiths HJ, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons WB, Mcminn A, Morley SA, Peck LS, Quesada A, Robinson SA, Schiaparelli S, Wall DH (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244

    Article  Google Scholar 

  • De Conto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249

    Article  CAS  Google Scholar 

  • De Ley P, De Ley IT, Morris K, Abebe E, Mundo-Ocampo M, Yoder M, Heras J, Waumann D, Rocha-Olivares A, Jay Burr AH, Baldwin JG, Thomas WK (2005) An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philos Trans R Soc Lond B 360:1945–1958

    Article  CAS  Google Scholar 

  • de Tomasel CM, Adams BJ, Tomasel FG, Wall DH (2013) The Life cycle of the Antarctic Nematode Plectus murrayi under laboratory conditions. J Nematol 45:39–42

    PubMed  PubMed Central  Google Scholar 

  • Dong K, Moroenyane I, Tripathi B, Kerfahi D, Takahashi K, Yamamoto N, An C, Cho H, Adams J (2017) Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan. Sci Rep 7: 3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshishka M, Lazarova S, Radoslavov G, Hristov P, Peneva VK (2015) New data on two remarkable Antarctic species Amblydorylaimus isokaryon (Loof, 1975) Andrassy, 1998 and Pararhyssocolpus paradoxus (Loof, 1975), gen. n., comb. n. (Nematoda, Dorylaimida). Zookeys 25–68

  • Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    Article  CAS  PubMed  Google Scholar 

  • Gojobori T, Ishii K, Nei M (1982) Estimation of average number of nucleotide substitution when the rate of substitution varies with nucleotide. J Mol Evol 18:414–423

    Article  CAS  PubMed  Google Scholar 

  • Greenslade P (1995) Collembola from the Scotia Arc and Antarctic Peninsula including descriptions of two new species and notes on biogeography. Pol Pismo Entomol 64:305–319

    Google Scholar 

  • Handoo ZA, Palomares-Rius JE, Cantalapiedra-Navarrete C, Liebanas G, Subbotin SA, Castillo P (2014) Integrative taxonomy of the stunt nematodes of the genera Bitylenchus and Tylenchorhynchus (Nematoda, Telotylenchidae) with description of two new species and a molecular phylogeny. Zool J Linn Soc 172:231–264

    Article  Google Scholar 

  • Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades. Mol Biol Evol 23:1792–1800

    Article  CAS  PubMed  Google Scholar 

  • Hughes K, Ott S, Bölter M, Convey P (2006) Colonisation processes. Springer, Dordrecht

    Book  Google Scholar 

  • Iakovenko NS, Smykla J, Convey P, Kaspšarová E, Kozeretska IA, Trokhymets V, Dykyy I, Plewka M, Devetter M, Duriš Z, Janko K (2015) Antarctic bdelloid rotifers: diversity, endemism and evolution. Hydrobiologia 761:5–43

    Article  Google Scholar 

  • Kagoshima H, Kito K, Aizu T, Shin-i T, Kanda H, Kobayashi S, Toyoda A, Fujiyama A, Kohara Y, Convey P, Niki H (2012) Multi-decadal survival of an Antarctic nematode, Plectus murrayi, in a –20 °C stored moss sample. Cryo Lett 33:280–288

    CAS  Google Scholar 

  • Kociolek JP, Kopalová K, Hamsher SE, Kohler TJ, Van de Vijver B, Convey P, McKnight DM (2017) Freshwater diatom biogeography and the genus Luticola: an extreme case of endemism in Antactica. Polar Biol 40:1185–1196

    Article  Google Scholar 

  • Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic: clues to history? Soil Biol Biochem 38:3141–3151

    Article  CAS  Google Scholar 

  • Meldal BH, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJ (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol phylogenetics Evol 42:622–636

    Article  CAS  Google Scholar 

  • Mulvey RH (1978) Predaceous nematodes of the family Mononchidae from the Mackenzie and Porcupine river systems and Somerset Island, N.W.T. Canada. Can J Zool 56:1847–1868

    Article  Google Scholar 

  • Nadler SA, De Ley P, Mundo-Ocampo M, Smythe AB, Patricia Stock S, Bumbarger D, Adams BJ, De Ley IT, Holovachov O, Baldwin JG (2006) Phylogeny of Cephalobina (Nematoda): molecular evidence for recurrent evolution of probolae and incongruence with traditional classifications. Mol Phylogenetics Evol 40:696–711

    Article  CAS  Google Scholar 

  • Newsham KK, Maslen NR, McInnes SJ (2006) Survival of antarctic soil metazoans at –80 °C for six years. Cryo Lett 27:291–294

    CAS  Google Scholar 

  • Nunn GB (1992) Nematode molecular evolution: an investigation of evolutionary patterns among nematodes based upon DNA sequences. PhD Dissertation. University of Nottingham, UK

  • Plasterk RH (1995) Reverse genetics: from gene sequence to mutant worm. Methods Cell Biol 48:59–80

    Article  CAS  PubMed  Google Scholar 

  • Porazinska DL, Wall DH (2002) Population age structure of nematodes in the Antarctic dry valleys: perspectives on time, space, and habitat suitability. Arctic Antarct Alpine Res 34:159–168

    Article  Google Scholar 

  • Powers TO, Todd TC, Burnell AM, Murray PCB, Fleming CC, Szalanski AL, Adams BA, Harris TS (1997) The rDNA internal transcribed spacer region as a taxonomic marker for nematodes. J Nematol 29:441–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pugh PJA (1993) A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic islands and the Southern Ocean. J Nat Hist 27:232–421

    Article  Google Scholar 

  • Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeogr 35:2176–2186

    Article  Google Scholar 

  • Raymond MR, Wharton DA, Marshall CJ (2014) Nematodes from the Victoria Land coast, Antarctica and comparisons with cultured Panagrolaimus davidi. Antarct Sci 26:15–22

    Article  Google Scholar 

  • Ruvolo M (1997) Molecular phylogeny of the hominoids: inferences from multiple independent DNA sequence data sets. Mol Biol Evol 14:248–265

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sanchez-Monge A, Flores L, Salazar L, Hockland S, Bert W (2015) An updated list of the plants associated with plant-parasitic Aphelenchoides (Nematoda: Aphelenchoididae) and its implications for plant-parasitism within this genus. Zootaxa 4013:207–224

    Article  PubMed  Google Scholar 

  • Sands CJ, Convey P, Linse K, McInnes SJ (2008) Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using the Tardigrada. BMC Ecol 8:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shatilovich AV, Tchesunov AV, NeretinaI TN, Grabarnik IP, Gubin SV, Vishnivetskaya TA, Onstott TC, Rivkina EM (2018) Viable Nematodes from late Pleistocene Permafrost of the Kolyma river lowland. Dokl Biol Sci 480:100–102

    Article  CAS  PubMed  Google Scholar 

  • Smiley RW, Merrifield K, Patterson LM, Whittaker RG, Gourlie JA, Easley SA (2004) Nematodes in dryland field crops in the semiarid pacific northwest United States. J Nematol 36:54–68

    PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Berg E, Tiedt LR, Subbotin SA (2014) Morphological and molecular characterization of several Paratylenchus Micoletzky, 1922 (Tylenchida: Paratylenchidae) species from South Africa and USA with some taxonomic notes. Nematology 16:323–358

    Article  Google Scholar 

  • Van den Berg E, Harris JM (1996) Rotylenchus capensis Van den Berg & Heyns (Tylenchida: Hoplolaimidae) in soils of island inland nunataks in western Dronning Maud Land, Antarctica. Afr Plant Prot 2:19–24

    Google Scholar 

  • van Vuuren BJ, Lee JE, Convey P, Chown SL (2018) Conservation implications of spatial genetic structure in two species of oribatid mites from the Antarctic Peninsula and the Scotia Arc. Antarct Sci 30:105–114

    Article  Google Scholar 

  • Velasco-Castrillón A, Gibson JA, Stevens MI (2014a) A review of current Antarctic limno-terrestrial microfauna. Polar Biol 37:1517–1531

    Article  Google Scholar 

  • Velasco-Castrillón A, Schultz MB, Colombo F, Gibson JA, Davies KA, Austin AD, Stevens MI (2014b) Distribution and diversity of soil microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS ONE 9:e87529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco-Castrillón A, McInnes SJ, Schultz MB, Arróniz-Crespo M, D’Haese CA, Gibson JAE, Adams BJ, Page TJ, Austin AD, Cooper SJB, Stevens MI (2015) Mitochondrial DNA analyses reveal widespread tardigrade diversity in Antarctica. Invertebr Syst 29:578–590

    Article  Google Scholar 

  • Velasco-Castrillón A, Stevens MI (2014) Morphological and molecular diversity at a regional scale: A step closer to understanding Antarctic nematode biogeography. Soil Biol Biochem 70:272–284

    Article  CAS  Google Scholar 

  • Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willems A, Peeters K, Van de Vijver B, De Wever A, Leliaertf F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113

    Article  Google Scholar 

  • Wharton DA (2002) Life at the Limits: Organisms in extreme environment. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

We thank Dr. Masaki Uchida and Dr. Hiroshi Kanda for providing Antarctic moss samples, Dr. Megumu Tsujimoto for discussion, Mr. Tadasu Shin-i, Dr. Hideaki Hiraki, Dr. Kazuho Ikeo and Dr. Chester Sands for advice on bioinformatic analysis, and Ms. Junko Kajiwara for excellent technical assistance. We greatly appreciate the generous support of Dr. Yuji Kohara for molecular analysis. British Antarctic Survey field staff are thanked for supporting the fieldwork on Signy, Léonie and Adelaide Islands, and Laura Gerrish of the BAS Mapping and Geographic Information Centre for preparing the maps in Fig. 1. HK was supported by JSPS KAKENHI Grant Numbers 23510239, 15K06906. SI and HK were supported by JSPS KAKENHI 23247012. PC is supported by NERC core funding to the BAS ‘Biodiversity, Evolution and Adaptation’ Team. This paper also contributes to the SCAR AntEco research programme. Anonymous reviewers and the Editor are thanked for constructive comments helping to improve and focus the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HK and PC led the project; HK performed all the molecular analyses of Antarctic nematodes, and wrote the manuscript with PC; RM morphologically identified most of the Antarctic nematodes; KK morphologically identified a nematode from King George Island; SI and HN supervised molecular examination by HK and advised on the manuscript.

Corresponding author

Correspondence to Peter Convey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagoshima, H., Maslen, R., Kito, K. et al. Integrated taxonomy combining morphological and molecular biological analyses of soil nematodes from maritime Antarctica. Polar Biol 42, 877–887 (2019). https://doi.org/10.1007/s00300-019-02482-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-019-02482-8

Navigation