Advertisement

Polar Biology

, Volume 41, Issue 10, pp 2033–2052 | Cite as

Seasonal succession, distribution, and diversity of planktonic protists in relation to hydrography of the Godthåbsfjord system (SW Greenland)

  • D. W. KrawczykEmail author
  • L. Meire
  • C. Lopes
  • T. Juul-Pedersen
  • J. Mortensen
  • C. L. Li
  • T. Krogh
Original Paper

Abstract

High-latitude fjord environments are undergoing dynamic seasonal changes, affecting spatio-temporal patterns in planktonic abundances. To investigate how physical gradients impact sub-Arctic planktonic protists (> 20 μm), a seasonal transect study was performed in 2013 during three periods of planktonic succession: spring, summer, and autumn. The samples were collected from the glacier-fjord-ocean transect in SW Greenland using two complementary sampling methods, i.e. net hauls (20-μm net) and Niskin bottles. The key drivers of the distribution of planktonic groups and dominant taxa were hydrographic properties (defined as ‘time’, salinity, and temperature) reflecting the area’s seasonally changing circulation system. Cold and relatively saline waters in spring favoured the single haptophyte species Phaeocystis cf. pouchetii, while in summer, fresher waters influenced by glacial discharge favoured diatoms, followed by dinoflagellates and predatory ciliates in autumn. Our findings reveal a monodominant structure among the planktonic protists observed in each key sub-region and in each season. (1) Gedaniella boltonii (spring) was associated with inner fjord upwelling, (2) Chaetoceros sp. (summer) and Chaetoceros cf. socialis (autumn) were linked to ‘glacial meltwater’ circulation in the main fjord, and (3) Thalassiosira poroseriata (summer) and Skeletonema sp. (autumn) characterized warm and relatively saline offshore waters influenced by the West Greenland Current. The observed spatio-temporal patterns were linked to changes in hydrographic regimes driven by the interplay between the melting of the Greenland Ice Sheet and inflows of offshore, Atlantic-sourced waters.

Keywords

Diatoms Haptophytes Phytoplankton blooms Seasonal succession Greenland ice sheet Sub-arctic fjord West Greenland Current 

Notes

Acknowledgements

We wish to thank the crew of R/V Sanna for field assistance. We express our gratitude to Andrzej Witkowski for taxonomic expertise of the new diatom species. The MarineBasic-Nuuk programme, part of the Greenland Ecosystem Monitoring Program, was funded by the Danish Energy Agency (Dancea) as part of its climate support programme for the Arctic. We acknowledge the financial support received from the Greenland Institute of Natural Resources, the Aage V. Jensen Charity Foundation, the Canadian Excellence Research Chair (CERC) program, the Arctic Science Partnership (ASP) and the ArcticNet Networks of Centres of Excellence programs. We want to thank the three anonymous reviewers for constructive comments and the University of Copenhagen for language improvement. This publication is a contribution to the MarineBasic-Nuuk programme and to the Greenland Climate Research Centre.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

300_2018_2343_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 47 kb)
300_2018_2343_MOESM2_ESM.docx (48 kb)
Supplementary material 2 (DOCX 48 kb)

References

  1. Arendt KE, Nielsen TG, Rysgaard S, Tönnesson K (2010) Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar Ecol Prog Ser 401:49–62CrossRefGoogle Scholar
  2. Arendt KE, Juul-Pedersen T, Mortensen J, Rysgaard S (2013) A 5-year study of seasonal patterns in mesozooplankton community structures in a sub-Arctic fjord reveals dominance of Microsetella norvegica (Crustacea, Copepoda). J Plankton Res 35:105–120CrossRefGoogle Scholar
  3. Birks HJB (1995) Quantitative palaeo environmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data, Technical Guide No. 5. Quaternary Research Association, Cambridge, UK, pp 161–236Google Scholar
  4. Chamnansinp A, Li Y, Lundholm N, Moestrup Ø (2013) Global diversity of two widespread, colony-forming diatoms of the marine plankton, Chaetoceros socialis (syn. C. radians) and Chaetoceros gelidus sp. nov. J Phycol 49:1128–1141.  https://doi.org/10.1111/jpy.12121 CrossRefPubMedGoogle Scholar
  5. Degerlund M, Eilertsen HC (2010) Main species characteristics of phytoplankton spring blooms in NE Atlantic and Arctic waters (68–80° N). Estuaries Coasts 33:242–269CrossRefGoogle Scholar
  6. Degerlund M, Huseby S, Zingone A, Sarno D, Landfald B (2012) Functional diversity in cryptic species of Chaetoceros socialis Lauder (Bacillariophyceae). J Plankton Res 34:416–431.  https://doi.org/10.1093/plankt/fbs004 CrossRefGoogle Scholar
  7. Gradinger RR, Baumann MEM (1991) Distribution of phytoplankton communities in relation to the large-scale hydrographical regime in the Fram Strait. Mar Biol 111:311–321CrossRefGoogle Scholar
  8. Greenland Ecosystem Monitoring. http://www.g-e-m.dk. Accessed 28 Feb 2018
  9. Grøntved B, Seidenfaden G (1938) The phytoplankton of the waters west of Greenland. Medd Grønland 82:5–380Google Scholar
  10. Guiry MD, Guiry GM (2018) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org. Accessed 09 May 2018
  11. Hasle GR, Heimdal BR (1998) The net phytoplankton from Kongsfjorden, Svalbard, July 1988, with general remarks on species composition of arctic phytoplankton. Polar Res 17:31–52CrossRefGoogle Scholar
  12. Hasle GR, Syvertsen EE (1996) Marine diatoms. In: Tomas CR (ed) Identifying marine diatoms and dinoflagellates. Academic Press, San DiegoGoogle Scholar
  13. Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105.  https://doi.org/10.1016/j.jmarsys.2013.01.003 CrossRefGoogle Scholar
  14. Juul-Pedersen T, Rysgaard S, Batty P, Mortensen J, Arendt KE, Retzel A, Nygaard R, Burmeister A, Martinsen W, Sejr MK, et al (2010) Nuuk basic: the MarineBasis programme. In: Jensen LM, Rasch M (eds) Nuuk ecological research operations, 4th Annual Report, 2010. Aarhus University, DCE—Danish Centre for Environment and Energy, Denmark, pp 45–67Google Scholar
  15. Juul-Pedersen T, Arendt KE, Mortensen J, Krawczyk D, Rysgaard S, Retzel A, Nygaard R, Burmeister A., Krause-Jensen D, et al (2014) Nuuk Basic: The MarineBasis programme. In: Jensen LM, Christensen TR (eds) Nuuk ecological research operations, 7th Annual Report, 2013. Aarhus University, DCE—Danish Centre for Environment and Energy, Denmark, pp 46–68Google Scholar
  16. Juul-Pedersen T, Arendt KE, Mortensen J, Blicher ME, Søgaard DH, Rysgaard S (2015) Seasonal and interannual phytoplankton production in a sub-arctic tidewater outlet glacier fjord, SW Greenland. Mar Ecol Prog Ser 524:27–38.  https://doi.org/10.3354/meps11174 CrossRefGoogle Scholar
  17. Kraberg A, Baumann M, Dürselen C-D (2010) Coastal phytoplankton. Photo Guide for Northern European Seas. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  18. Krawczyk DW, Arendt KE, Juul-Pedersen T, Sejr MK, Blicher ME, Jakobsen HH (2015a) Spatial and temporal distribution of planktonic protists in the East Greenland fjord and offshore waters. Mar Ecol Prog Ser 538:99–116.  https://doi.org/10.3354/meps11439 CrossRefGoogle Scholar
  19. Krawczyk DW, Witkowski A, Juul-Pedersen T, Arendt KE, Mortensen J, Rysgaard S (2015b) Microplankton succession in a SW Greenland tidewater glacial fjord influenced by coastal inflows and run-off from the Greenland Ice Sheet. Polar Biol 38:1515–1533.  https://doi.org/10.1007/s00300-015-1715-y CrossRefGoogle Scholar
  20. Kubiszyn AM, Wiktor JM, Wiktor JM Jr, Griffiths C, Kristiansen S, Gabrielsen TM (2017) The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitzbergen). J Mar Syst 169:61–72CrossRefGoogle Scholar
  21. Li CL, Witkowski A, Ashworth MP, Dąbek P, Sato S, Zgłobicka I, Witak M, Khim JS, Kwon CJ (2018) The morphology and molecular phylogenetics of some marine diatom taxa within the Fragilariaceae, including twenty-three undescribed species and their relationship to Nanofrustulum, Opephora and Pseudostaurosira. Phytotaxa.  https://doi.org/10.11646/phytotaxa.00.1.1 CrossRefGoogle Scholar
  22. Lopes C, Mix AC, Abrantes F (2010) Environmental controls of diatom species in the northeast Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 297:188–200CrossRefGoogle Scholar
  23. Meire L, Mortensen J, Rysgaard S, Bendtsen J, Boone W, Meire P, Meysman FJR (2016) Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthåbsfjord, SW Greenland). J Geophys Res Biogeosci 121:1581–1592.  https://doi.org/10.1002/2015jg003240 CrossRefGoogle Scholar
  24. Mortensen J, Lennert K, Bendtsen J, Rysgaard S (2011) Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J Geophys Res.  https://doi.org/10.1029/2010JC006528 CrossRefGoogle Scholar
  25. Mortensen J, Bendtsen J, Motyka RJ, Lennert K, Truffer M, Fahnestock M, Rysgaard S (2013) On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J Geophys Res Oceans 118:1382–1395.  https://doi.org/10.1002/jgrc.20134 CrossRefGoogle Scholar
  26. Mortensen J, Bendtsen J, Lennert K, Rysgaard S (2014) Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N). J Geophys Res Earth Surf 119:2591–2603.  https://doi.org/10.1002/2014JF003267 CrossRefGoogle Scholar
  27. Munk P, Hansen BW, Nielsen TG, Thomsen HA (2003) Changes in plankton and fish larvae communities across hydrographic fronts off West Greenland. J Plankton Res 25:815–830CrossRefGoogle Scholar
  28. Nielsen TG, Hansen PJ (1999) Dyreplankton I danske farvande. Miljø- og Energiministeriet. Danmarks Miljøundersøgelsen, DenmarkGoogle Scholar
  29. Onda DFL, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C (2017) Seasonal and Interannual Changes in Ciliate and Dinoflagellate Species Assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front Mar Sci 4:1–16.  https://doi.org/10.3389/fmars.2017.00016 CrossRefGoogle Scholar
  30. Poulin M, Daugbjerg N, Gradinger R (2011) The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar Biodivers 41:13–28.  https://doi.org/10.1007/s12526-010-0058-8 CrossRefGoogle Scholar
  31. Quillfeldt CH (1996) Ice algae and phytoplankton in north Norwegian and arctic waters: species composition, succession and distribution. PhD dissertation, University of Tromsø, Norges fiskerihøgskole, NorwayGoogle Scholar
  32. Quillfeldt CH (1997) Distribution of diatoms in the Northeast Water Polynya, Greenland. J Mar Syst 10:1–4.  https://doi.org/10.1016/S0924-7963 CrossRefGoogle Scholar
  33. Quillfeldt CH (2001) Identification of some easily confused common diatoms species in Arctic spring blooms. Bot Mar 44:375–389Google Scholar
  34. Richter A, Rysgaard S, Dietrich R, Mortensen J, Petersen D (2011) Coastal tides in West Greenland derived from tide gauge records. Ocean Dyn 61:39–49.  https://doi.org/10.1007/s10236-010-0341-z CrossRefGoogle Scholar
  35. Rodríguez-Ramos T, Dornelas M, Marañón E, Cermeño P (2014) Conventional sampling methods severely underestimate phytoplankton species richness. J Plankton Res 36:334–343CrossRefGoogle Scholar
  36. Sejr M, Frandsen E, Winding M (2015) Zackenberg Basic: The MarineBasis programme. In: Hensen J, Topp-Jørgensen E, Christensen TR (eds) Zackenberg ecological research operations, 21th Annual Report, 2015. Aarhus University, DCE—Danish Centre for Environment and Energy, Denmark, pp 59–65Google Scholar
  37. Smidt ELB (1979) Annual cycles of primary production and of zooplankton at Southwest Greenland. Medd Grønland. Bioscience 1:1–53Google Scholar
  38. ter Braak CJF, Ŝmilauer P (2002) CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, New York, USAGoogle Scholar
  39. Throndsen J, Hasle GR, Tangen K (2007) Phytoplankton of Norwegian coastal waters. Almater Forlag As, OsloGoogle Scholar
  40. Utermöhl H (1958) Zur Vervollkommung der quantitative Phytoplanktomethodik. Mitt Int Ver Limnol 9:1–39Google Scholar
  41. Verity PG, Zirbel MJ, Nejstgaard JC (2007) Formation on very young colonies by Phaeocystis pouchetii from western Norway. Aquat Microb Ecol 47:267–274CrossRefGoogle Scholar
  42. Witkowski A, Barka F, Mann DG, Li CL, Weisenborn JLF, Ashworth MP, Kurzydłowski KJ, Zgłobicka I, Dobosz S (2014) A description of Biremis panamae sp. nov., a new diatom species from the marine littoral, with an account of the phylogenetic position of Biremis D.G. Mann et E.J. Cox (Bacillariophyceae). PLoS ONE.  https://doi.org/10.1371/journal.pone.0114508 CrossRefPubMedPubMedCentralGoogle Scholar
  43. WoRMS Editorial Board (2018) World register of marine species. http://www.marinespecies.org at VLIZ. Accessed 09 May 2018.  https://doi.org/10.14284/170

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • D. W. Krawczyk
    • 1
    Email author
  • L. Meire
    • 1
    • 2
    • 3
  • C. Lopes
    • 4
    • 5
  • T. Juul-Pedersen
    • 1
  • J. Mortensen
    • 1
  • C. L. Li
    • 6
  • T. Krogh
    • 1
  1. 1.Greenland Climate Research CentreGreenland Institute of Natural ResourcesNuukGreenland
  2. 2.Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea ResearchUtrecht UniversityYersekeNetherlands
  3. 3.Arctic Research CentreAarhus UniversityAarhusDenmark
  4. 4.Instituto Português do Mar e da AtmosferaLisbonPortugal
  5. 5.Centro de Ciências do MarFaroPortugal
  6. 6.Palaeoceanology Unit, Faculty of GeosciencesUniversity of SzczecinSzczecinPoland

Personalised recommendations