First data on the parasite fauna of daubed shanny Leptoclinus maculatus (Fries 1838) (Actinopterygii, Perciformes: Stichaeidae) in Svalbard waters

  • Svetlana A. MurzinaEmail author
  • Sergey G. Sokolov
  • Svetlana N. Pekkoeva
  • Evgeny P. Ieshko
  • Nina N. Nemova
  • Roar Kristoffersen
  • Stig Falk-Petersen
Short Note


The daubed shanny, Leptoclinus maculatus (Fries 1838), is an arctic-boreal fish species and widely distributed in Svalbard waters. The ecological role of L. maculatus is determined by its complex life cycle—adults are bottom-dwelling while the young are pelagic—which indicates its place in the Arctic trophic food webs, both pelagic and benthic. As an intermediate link between lipid-rich copepods on which the young of L. maculatus feed, while juvenile L. maculatus are the prrey of Arctic birds and mammals, the species can be considered as an important reservoir and host for Arctic marine parasites. In the present study, we examined fish for parasites by total necropsy. This paper reports, for the first time, data on the parasite fauna of L. maculatus in the waters around Svalbard. L. maculatus is considered an ecologically significant species in this area, and an important link in the transfer of matter and energy from primary producers to higher-order consumers in the Arctic food chains. Peritrichianciliates Scyphidia sp., adult trematodes Helicometrainsolita Polyansky 1955, encysted metacercariae Neophasis sp., juvenile anisakid nematodes, and dyhyllobothriid larvae were found in L. maculatus. The most frequent findings were Neophasis sp. (64%). The data obtained in this study indicate the involvement of L. maculatus in certain transfers of parasites in Arctic waters, between hosts at the same stage of development and between hosts at different stages of development.


Leptoclinus maculatus Parasites Food Chains Svalbard 



This search was conducted within the framework of the state assignment ofthe KarRC RAS No. 0221-2017-0042 and No. 0221-2017-0050, Russian Foundation for Basic Research No. 17-04-00466, and the Research Council of Norway project “SpitsEco”.

Compliance with ethical standards

Conflict of interest

Authors declare no conflicts of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.


  1. Abollo E, Gestal C, López A, González AF, Guerra A, Pascual S (1998) Squid as trophic bridges for parasite flow within marine ecosystems: the case of Anisakis simplex (Nematoda: Anisakidae), or when the wrong way can be right. Afr J Mar Sci 20:223–232. CrossRefGoogle Scholar
  2. Blend CK, Dronen NO (2015) A review of the genus Helicometra Odhner, 1902 (Digenea: Opecoelidae: Plagioporinae) with a key to species including Helicometra overstreeti n. sp. from the cusk-eel Luciobrotula corethromycter Cohen, 1964 (Ophidiiformes: Ophidiidae) from the Gulf of Mexico. Mar Biodivers 45:183–270. CrossRefGoogle Scholar
  3. Bray RA, Gibson DI (1991) The Acanthocolpidae (Digenea) of fishes from the north-east Atlantic: the status of Neophasis Stafford, 1904 (Digenea) and a study of North Atlantic form. Syst Parasitol 19:95–117. CrossRefGoogle Scholar
  4. Bush AD, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis, revised. J Parasitol 84:575–583. CrossRefGoogle Scholar
  5. Dahl TM, Falk-Petersen S, Gabrielsen GW, Sargent JR, Hop H, Millar RM (2003) Lipids and stable isotopes in common eider, black-legged kittiwake and northern fulmar: a trophic study from an Arctic fjord. Mar Ecol Prog Ser 256:257–269. CrossRefGoogle Scholar
  6. Delyamure SL, Skrjabin AS, Serdukov AM (1985) Diphyllobothriata—flatworm parasites of man, mammals and birds. Essentials of Cestodology, Vol. XI. Nauka, MoscowGoogle Scholar
  7. Dogiel VA (1961) Ecology of the parasites of freshwater fishes. In: Dogiel VA, Petrushevski GK, Polyanski YuI (eds) Parasitology of fishes. Oliver and Boyd, Edinburgh, pp 384Google Scholar
  8. Falk-Petersen S, Falk-Petersen I-B, Sargent JR (1986) Structure and function of an unusual lipid storage organ in the arctic fish Lumpenus maculatus Fries. Sarsia 71:1–6. CrossRefGoogle Scholar
  9. Falk-Petersen S, Timofeev S, Pavlov V, Sargent JR (2007) Climate variability and the effect on Arctic food chains. The role of Calanus. In: Arctic-alpine ecosystems and people in a changing environment. Springer, Berlin, pp 147–166.
  10. Gibson DI (1996) Trematoda. In: Margolis L, Kabata Z (eds) Guide to the parasites of fishes of Canada, vol 4. NRC Research Press, Ottawa, p 373Google Scholar
  11. Granovitch AI (1999) Parasitic systems and the structure of parasite populations. Helgol Mar Res 53:9–18. CrossRefGoogle Scholar
  12. Gregori M, Roura Á, Abollo E, González ÁF, Pascuala S (2015) Anisakis simplex complex (Nematoda: Anisakidae) in zooplankton communities from temperate NE Atlantic waters. J Nat Hist 49(13–14):755–773. CrossRefGoogle Scholar
  13. Hanson JM, Chouinard GA (2002) Diet of Atlantic cod in the southern Gulf of St Lawrence as an index of ecosystem change, 1959–2000. J Fish Biol 60:902–922. Google Scholar
  14. Ishii Y, Fujino T, Weerasooriya MV (1989) Morphology of anisakine larvae. In: Ishikura H, Namiki M (eds) Gastric Anisakiasis in Japan. Springer, Tokyo, pp 19–29CrossRefGoogle Scholar
  15. Karasev AB (2003) The catalogue of fish parasites in the Barents Sea. Murmansk, pp 150Google Scholar
  16. Klimpel S, Palm HW (2011) Anisakid Nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? In: Mehlhorn H (ed) Progress in parasitology. Parasitology research monographs, vol 2. Springer, Heidelberg, pp 201–222CrossRefGoogle Scholar
  17. Knudsen R, Amundsen P-A, Nilsen R, Kristoffersen R, Klemetsen A (2008) Food borne parasites as indicators of trophic segregation between Arctic charr and brown trout. Environ Biol Fishes 83:107–116CrossRefGoogle Scholar
  18. Labansen AL, Lydersen C, Haug T, Kovacs KM (2007) Spring diet of ringed seals (Phoca hispida) from northwestern Spitsbergen, Norway. ICES J Mar Sci 64:1246–1256. CrossRefGoogle Scholar
  19. Lom J, Dyková I (1992) Protozoan parasites of fishes. Elsevier, AmsterdamGoogle Scholar
  20. Markevich AI (2004) Pattern of night activity in the Prickleback fish Enrogrammus hexagrammus. Russian J Mar Biol 30(3):204–208. CrossRefGoogle Scholar
  21. McClelland G, Martell DJ (2001) Larval seal worm (Pseudoterranova decipiens) infection in various fish species from eastern Nova Scotia, the central Scotian Shelf and the northeastern Gulf of Maine. NAMMCO Sci Publ 3:57–76CrossRefGoogle Scholar
  22. Meyer Ottesen CA, Hop H, Christiansen JS, Falk-Petersen S (2011) Early life history of the daubed shanny (Teleostei: Leptoclinus maculatus) in Svalbard waters. Mar Biodivers 41(3):383–394. CrossRefGoogle Scholar
  23. Meyer Ottesen CA, Hop H, Falk-Petersen S, Christiansen JS (2014) Growth of daubed shanny (Teleostei: Leptoclinus maculatus) in Svalbard waters. Polar Biol 37:809–815. CrossRefGoogle Scholar
  24. Münster J, Klimpel S, Fock HO, MacKenzie K, Kuhn T (2015) Parasites as biological tags to track an ontogenetic shift in the feeding behaviour of Gadus morhua off West and East Greenland. Parasitol Res 114(7):2723–2733. CrossRefGoogle Scholar
  25. Murzina SA, Nefedova ZA, Falk-Petersen S, Ripatti PO, Ruokolainen TR, Pekkoeva SN, Nemova NN (2013) Lipid Status of the Two High Latitude Fish Species, Leptoclinus maculatus and Lumpenus fabricii. Int J Mol Sci 14(14):7048–7060. CrossRefGoogle Scholar
  26. Odhner T (1905) Die Trematoden des arktischen Gebietes. Inaugural-Dissertation zur Erlangung der Doktor würdemit Genehmigung der Mathematisch-Naturwissenschaftlichen Sektion der weitberühmten Philosophischen Fakultätzu Upsala zuröffentlichen Beurteilung. Gustav Fischer, JenaGoogle Scholar
  27. Pekkoeva SN, Murzina SA, Nefedova ZA, Ripatti PO, Falk-Petersen S, Berge J, Lonne O, Nemova NN (2017) Ecological role of lipids and fatty acids in the early postembryonic development of the daubed shanny, Leptoclinus maculatus (Fries, 1838) from Kongsfjorden, West Spitsbergen in winter. Russ J Ecol 48(3):240–244. CrossRefGoogle Scholar
  28. Polyansky YI (1955) Data on the parasitology of fishes of the Northern seas of the USSR. Parasites of fishes of the Barents Sea. Trudy Inst Zool Acad Nauk USSR 19:5–170Google Scholar
  29. Shults LM, Frost KJ (1988) Helminth parasites of ribbon seals, Phoca fasciata, in the Bering Sea and their intermediate hosts. Proc Helminthol Soc Washington 55:68–73. Google Scholar
  30. Song W, Wilbert N (2002) Faunistic studies on marine ciliates from the Antarctic benthic area, including descriptions of one epizoic form, 6 new species and 2 new genera (Protozoa: Ciliophora). Acta Protozool 41:23–61. Google Scholar
  31. Viljoen S, van As JG (1985) Sessile peritrichs (Ciliophora: Peritricha) from freshwater fish in the Transvaal, South Africa. South Afr J Zool 20:79–96. CrossRefGoogle Scholar
  32. Williams HH, MacKenzie K, McCarthy AM (1992) Parasites as biological indicators of the population biology, migrations, diet and phylogenetics of fish. Rev Fish Biol Fish 2:144–176. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Svetlana A. Murzina
    • 1
    Email author
  • Sergey G. Sokolov
    • 1
    • 2
  • Svetlana N. Pekkoeva
    • 1
  • Evgeny P. Ieshko
    • 1
  • Nina N. Nemova
    • 1
  • Roar Kristoffersen
    • 3
  • Stig Falk-Petersen
    • 3
    • 4
  1. 1.Institute of Biology of the Karelian Research Centre of the Russian Academy of SciencesPetrozavodskRussia
  2. 2.A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of SciencesMoscowRussia
  3. 3.Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsöNorway
  4. 4.Fram CentreAkvaplan-Niva ASTromsöNorway

Personalised recommendations