Polar Biology

, Volume 42, Issue 3, pp 527–540 | Cite as

The temporal variability of the macrofauna at the deep-sea observatory HAUSGARTEN (Fram Strait, Arctic Ocean)

  • A. VedeninEmail author
  • V. Mokievsky
  • T. Soltwedel
  • N. Budaeva
Original Paper


Regular biological observations of the deep sea bottom fauna are very important for understanding the role benthic biota plays in ocean ecosystems. Temporal variability in macrobenthos structure is usually studied in terms of general community characteristics including density, biomass and diversity. In this investigation, we also focused on the species composition and their individual characteristics in terms of temporal dynamics. The deep-sea macrofauna was studied based on the material collected in the Eastern Fram Strait during two expeditions in July–August 2003 and July 2012. Stations were taken at depths of about 2500 m at the deep-sea observatory using the USNEL box corer (0.25 m2). Three stations at varying distances were sampled in 2003 (three cores per station). In 2012, the same stations were resampled with an additional station taken close to the central HAUSGARTEN permanent sampling site (one core per station). No significant changes in the total density and biomass were found between the two sampling events. However, the density of several common species has changed significantly (e.g. densities of Mendicula ockelmanni and Chaetozone cf. jubata have increased). Four species out of total 64 were unique for the 2003 samples, while six species out of 52 were unique for 2012 samples. The absence of several particular species in the samples from the different years is estimated to be not random: the number of samples required to find these species was less than the number of samples collected. The differences in time between the very same stations exceeded the inner spatial heterogeneity of each of the three stations. However, the spatial heterogeneity within the scale of 20–25 km exceeded the temporal differences.


Arctic Benthic communities Fram Strait Deep Sea Temporal variability 



The authors wish to thank the crew and the participants of the RV Polarstern expeditions ARK-XIX/3c and ARK-XXVII/2 for their help onboard with sampling and processing of samples. We would like to thank the following specialists for their help in identification of benthic macrofauna: Dr. Caroline Pantke (Porifera), Dr. Elena Krylova (Bivalvia), Dr. Marina Malutina (Isopoda) and Dr. Alexander Mironov (Echinodermata). Our special thanks are to Dr. Andrey Azovsky and Dr. Christiane Hasemann for help in statistical analysis. This work was partly funded by the RSF Grant 14-50-00095 and by RFBR Grants 15-04-01870, 18-05-60053, 18-05-60228 and 17-05-00787 and the State assignment of IORAS (theme \({\text {N}}^{\underline{\rm o}}\) 0149-2019-0009). The manuscript has the Eprint ID 41439 of the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Germany.

Compliance of ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

300_2018_2442_MOESM1_ESM.docx (43 kb)
Supplementary file1 (DOCX 42 kb)


  1. Azovsky AI (2018) Analysis of long-term biological data series: methodological problems and possible solutions. J Gene Biol (Moscow) 79:329–341 (in Russian) Google Scholar
  2. Bergmann M, Soltwedel T, Klages M (2011) The interannual variability of megafaunal assemblages in the Arctic deep sea: preliminary results from the HAUSGARTEN observatory (79 N). Deep Sea Res II 58:711–723CrossRefGoogle Scholar
  3. Beszczynska-Möller A, Fahrbach E, Schauer U, Hansen E (2012) Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean 1997–2010. ICES J Mar Sci 69:852–886CrossRefGoogle Scholar
  4. Billett DSM, Bett BJ, Reid WDK, Boorman B, Priede IG (2010) Long-term change in the abyssal NE Atlantic: the ‘Amperima Event’ revisited. Deep Sea Res II 57:1406–1417CrossRefGoogle Scholar
  5. Billett DSM, Bett BJ, Rice AL, Thurston MH, Galéron J, Sibuet M, Wolff GA (2001) Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic). Prog Oceanogr 50:325–348CrossRefGoogle Scholar
  6. Billett DSM, Rice AL (2001) The BENGAL programme: introduction and overview. Prog Oceanogr 50:13–25CrossRefGoogle Scholar
  7. Bluhm BA, Ambrose WG, Bergmann M, Clough LM, Gebruk AV, Hasemann C, Iken K, Klages M, MacDonald IR, Renaud PE, Schewe I, Soltwedel T, Włodarska-Kowalczuk M (2011) Diversity of the arctic deep-sea benthos. Mar Biodiv 41:87–107CrossRefGoogle Scholar
  8. Bluhm BA, Kosobokova KN, Carmack EC (2015) A tale of two basins: an integrated physical and biological perspective of the deep Arctic Ocean. Prog Oceanogr 139:89–121CrossRefGoogle Scholar
  9. Budaeva NE, Mokievsky VO, Soltwedel T, Gebruk AV (2008) Horizontal distribution patterns in Arctic deep-sea macrobenthic communities. Deep Sea Res I 55:1167–1178CrossRefGoogle Scholar
  10. Buzhinskaja GN (2010) Illustrated keys to free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Nemertea, Cephalorincha, Olygochaeta, Hirudinea, Pogonophora, Echiura, Sipuncula, Phoronida and Brachiopoda, vol 2. University of Alaska Fairbanks, KMK Scientific Press Ltd, AlaskaGoogle Scholar
  11. Chambers SJ, Woodham A (2003) A new species of Chaetozone (Polychaeta: Cirratulidae) from deep water in the northeast Atlantic, with comments on the diversity of the genus in cold northern waters. In: Sigvaldadottir E, Mackie ASY, Helgason GV, Reish DJ, Svavarsson J, Steingrimsson SA, Gudmundsson G (eds) Advances in polychaete research. Springer, Dordrecht, pp 41–48CrossRefGoogle Scholar
  12. Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, PlymouthGoogle Scholar
  13. Degen R, Vedenin A, Gusky M, Boetius A, Brey T (2015) Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean. Polar Res. Google Scholar
  14. Galéron J, Sibuet M, Vanreusel A, Mackenzie K, Gooday AJ, Dinet A, Wolff GA (2001) Temporal patterns among meiofauna and macrofauna taxa related to changes in sediment geochemistry at an abyssal NE Atlantic site. Prog Oceanogr 50:303–324CrossRefGoogle Scholar
  15. Glover AG, Gooday AJ, Bailey DM, Billett DSM, Chevaldonné P, Colaco A, Vanreusel A (2010) Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Adv Mar Biol 58:1–95CrossRefPubMedGoogle Scholar
  16. Gooday AJ, Rathburn AE (1999) Temporal variability in living deep-sea benthic foraminifera: a review. Earth Sci Rev 46:187–212CrossRefGoogle Scholar
  17. Górska B, Grzelak K, Kotwicki L, Hasemann C, Schewe I, Soltwedel T, Włodarska-Kowalczuk M (2014) Bathymetric variations in vertical distribution patterns of meiofauna in the surface sediments of the deep Arctic Ocean (HAUSGARTEN, Fram strait). Deep Sea Res I 91:36–49CrossRefGoogle Scholar
  18. Grebmeier JM, Bluhm BA, Cooper LW, Denisenko SG, Iken K, Kędra M, Serratos C (2015) Time-series benthic community composition and biomass and associated environmental characteristics in the Chukchi Sea during the RUSALCA 2004–2012 Prog Oceanogr 28:116–113CrossRefGoogle Scholar
  19. Hammer Ø, Harper DAT, Ryan PD (2003) Paleontological statistics—PAST. University of Oslo. Accessed 03 April 2008
  20. Hoste E, Vanhove S, Schewe I, Soltwedel T, Vanreusel A (2007) Spatial and temporal variations in deep-sea meiofauna assemblages in the Marginal Ice Zone of the Arctic Ocean. Deep Sea Res I 54:109–129CrossRefGoogle Scholar
  21. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586CrossRefPubMedGoogle Scholar
  22. Klages M, Thiede J, Foucher J-P (2004) The Expedition ARKTIS XIX/3 of the Research Vessel POLARSTERN in 2003 - reports of Legs 3a, 3b and 3c. Berichte zur Polar- und Meeresforschung, 488, Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven.Google Scholar
  23. Kozlov MV (2014) Planning of ecological research: theory and practical recommendations. Tovarishchestvo nauchnykh izdanii KMK, Moscow (in Russian)Google Scholar
  24. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621CrossRefGoogle Scholar
  25. Laguionie-Marchais C, Billett DSM, Paterson GLD, Ruhl HA, Soto EH, Smith KL, Thatje S (2013) Inter-annual dynamics of abyssal polychaete communities in the North East Pacific and North East Atlantic – a family-level study. Deep Sea Res I 75:175–186CrossRefGoogle Scholar
  26. Larkin KE, Ruhl HA, Bagley P, Benn A, Bett BJ, Billett DSM, Boetius A, Chevaldonné P, Colaço A, Copley J, Danovaro R, Escobar-Briones E, Glover A, Gooday AJ, Hughes JA, Kalogeropoulou V, Kelly-Gerreyn BA, Kitazato H, Klages M, Lampadariou N, Lejeusne C, Perez T, Priede IG, Rogers A, Sarradin PM, Sarrazin J, Soltwedel T, Soto EH, Thatje S, Tselepides A, Tyler PA, van den Hove S, Vanreusel A, Wenzhöfer F (2010) Benthic biology time-series in the deep sea: indicators of change. In OceanObs' 09: Sustained Ocean Observations and Information for SocietyGoogle Scholar
  27. Mheidze MO, Mirvis AB (1975) To a question of the sampling volume determination (in Russian). In: Plokhinskiy NA (ed) Biometrical methods. Nauka, Moscow, pp 90–91Google Scholar
  28. Müller F, Bergmann M, Dannowski R, Dippner JW, Gnauck A, Haase P, Jochimsen MC, Kasprzak P, Kröncke I, Kümmerlin R, Küster M, Lischeid G, Meesenburg H, Merz C, Millat G, Müller J, Padisák J, Schimming CG, Schubert H, Schult M, Selmeczy G, Shatwell T, Stoll S, Schwabe M, Soltwedel T, Straile D, Theuerkauf M (2016) Assessing resilience in long-term ecological data sets. Ecol Ind 65:10–43CrossRefGoogle Scholar
  29. Osborn KJ, Kuhnz LA, Priede IG, Urata M, Gebruk AV, Holland ND (2011) Diversification of acorn worms (Hemichordata, Enteropneusta) revealed in the deep sea. Proc R Soc Lond B Biol Sci rspb20111916Google Scholar
  30. Oug E, Bakken T, Kongsrud JA, Alvestadet T (2016) Polychaetous annelids in the deep Nordic Seas: Strong bathymetric gradients, low diversity and underdeveloped taxonomy. Deep-Sea Res II. Google Scholar
  31. Pielou EC (1966) Shannon's formula as a measure of specific diversity and its use and misuse. Am Nat 100:463–465CrossRefGoogle Scholar
  32. Ruhl HA, Ellena JA, Smith KL (2008) Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proc Natl Acad Sci 105:17006–17011CrossRefPubMedGoogle Scholar
  33. Ruhl HA, Smith KL (2004) Shifts in deep-sea community structure linked to climate and food supply. Science 305:513–515CrossRefPubMedGoogle Scholar
  34. Simpson EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  35. Smith KL, Druffel ERM (1998) Long time-series monitoring of an abyssal site in the NE Pacific: an introduction. Deep-Sea Res 45:573–586CrossRefGoogle Scholar
  36. Smith KL Jr, Ruhl HA, Kaufmann RS, Kahru M (2008) Tracing abyssal food supply back to upper-ocean processes over a 17-year time-series in the northeast Pacific. Limnol Oceanogr 53:2655–2667CrossRefGoogle Scholar
  37. Smith KL, Ruhl HA, Bett BJ, Billett DSM, Lampitt RS, Kaufmann RS (2009) Climate, carbon cycling, and deep-ocean ecosystems. Proc Natl Acad Sci USA 106:19211–19218CrossRefPubMedGoogle Scholar
  38. Soltwedel T, Bauerfeind E, Bergmann M, Budaeva N, Hoste E, Jaeckisch N, von Juterzenka K, Matthiessen J, Mokievsky V, Nöthig E-M, Queric N-V, Sablotny B, Sauter E, Schewe I, Urban-Malinga B, Wegner J, Wlodarska-Kowalczuk M Klages M (2005) HAUSGARTEN: multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic Ocean. Oceanography 18:47–61CrossRefGoogle Scholar
  39. Soltwedel T, Bauerfeind E, Bergmann M, Bracher A, Budaeva N, Busch K, Cherkasheva A, Fahl K, Lalande C, Metfies K, Nöthig E-M, Meyer K, Quéric N-V, Schewe I, Wlodarska-Kowalczuk M, Klages M (2015) Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN. Ecol Ind 65:89–102CrossRefGoogle Scholar
  40. Soltwedel T, Pfannkuche O, Thiel H (1996) The size structure of deep-sea meiobenthos in the north-eastern Atlantic: nematode size spectra in relation to environmental variables. J Mar Biol Assoc UK 76:327–344CrossRefGoogle Scholar
  41. Soltwedel T (2013) The Expedition of the Research Vessel “Polarstern” to the Arctic in 2012 (ARK-XXVII/2). Reports on Polar and Marine Research 658, Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven.Google Scholar
  42. Soto EH, Paterson GLJ, Billett DSM, Hawkins LE, Galeron J, Sibuet M (2010) Temporal variability in polychaete assemblages of the abyssal NE Atlantic Ocean. Deep Sea Res II 57:1396–1405CrossRefGoogle Scholar
  43. Sukhotin A, Berger V (2013) Long-term monitoring studies as a powerful tool in marine ecosystem research. Hydrobiologia 706:1–9CrossRefGoogle Scholar
  44. Taylor J, Krumpen T, Soltwedel T, Gutt J, Bergmann M (2017) Dynamic benthic megafaunal communities: Assessing temporal variations in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015. Deep Sea Res. Google Scholar
  45. Vardaro M, Ruhl HA, Smith KL (2009) Climate variation, carbon flux, and bioturbation in the abyssal North Pacific. Limnol Oceanogr 54:2081–2088CrossRefGoogle Scholar
  46. Vedenin A, Budaeva N, Mokievsky V, Pantke C, Soltwedel T, Gebruk A (2016) Spatial distribution patterns in macrobenthos along a latitudinal transect at the deep-sea observatory HAUSGARTEN. Deep Sea Res I 114:90–98CrossRefGoogle Scholar
  47. Wlodarska-Kowalczuk M, Kendall MA, Weslawski J-M, Klages M, Soltwedel T (2004) Depth gradients of benthic standing stock and diversity on the continental margin at a high latitude ice-free site (off West Spitsbergen, 791N). Deep Sea Res I 51:1903–1914CrossRefGoogle Scholar
  48. Zenkevitch LA (1966) The systematics and distribution of abyssal and hadal (ultraabyssal) Echiuroidea. Galathea report 8:175–184Google Scholar
  49. Zhirkov IA (2001) Polychaeta of the Arctic Ocean. Yanus-K Press, Moscow (in Russian) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.P.P. Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- Und MeeresforschungBremerhavenGermany
  3. 3.Department of Natural HistoryUniversity Museum of Bergen, University of BergenBergenNorway

Personalised recommendations