Advertisement

Polar Biology

, Volume 41, Issue 5, pp 839–853 | Cite as

The Araneae of Svalbard: the relationships between specific environmental factors and spider assemblages in the High Arctic

  • Martin T. Dahl
  • Nigel G. Yoccoz
  • Kjetil Aakra
  • Stephen J. Coulson
Original Paper
  • 135 Downloads

Abstract

As top predators in the Arctic invertebrate fauna, spiders in Svalbard are key components of the terrestrial ecosystem. However, most descriptions consist of observations of species occurrence and few repeated sampling campaigns investigating these heterogeneous assemblages, or the relationship between microhabitats and seasonality, exist. Spider assemblages were evaluated along four altitudinal transects (c. 10–300 m above mean sea level) on the west coast of Spitsbergen, Svalbard, throughout the summer of 2012. The slopes were selected to include most of the vegetation types typical for this region of Svalbard. Eleven of the known 15 native spider species were collected (10 Linyphiidae and 1 Gnaphosidae). We used Generalised Linear Models (GLM) for each spider species to identify the factors best explaining spider species abundance and distribution. The distribution of the majority of spider species was best described by vegetation or topography and none was accurately predicted by temperature. Only two species (Erigone arctica palaearctica and Hilaira glacialis) were common at all four sites and these two constituted 54% (1650 and 639 individuals, respectively) of the total spider individuals trapped. That assemblages of linyphiid spiders can differ greatly over small local and temporal scales further demonstrates the complexity of the Arctic terrestrial invertebrate community.

Keywords

Linyphiidae Spitsbergen Species distribution Elevation Diversity 

Notes

Acknowledgements

We would like to thank the University of Tromsø (UiT) and the University Centre in Svalbard (UNIS) for the support of this project. The fieldwork in the summer of 2012 was supported by the Arctic Field Grant (AFG). We would like to thank the UNIS logistics team and Charmain Hamilton for assistance in the field. We also thank the Governor of Svalbard (Sysselmannen) for the permits given for fieldwork in Svalbard. We would also like to thank Arne Fjellberg and Elisabeth J. Cooper for their comments on a previous draft and the three anonymous reviewers for the suggestions that improved the final paper.

Supplementary material

300_2017_2247_MOESM1_ESM.pdf (137 kb)
Supplementary material 1 (PDF 137 kb)

References

  1. Aakra K, Hauge E (2003) Checklist of Norwegian spiders (Arachnida: Araneae), including Svalbard and Jan Mayen. Nor J Entomol 50:109–129Google Scholar
  2. Adis J (1979) Problems of interpreting arthropod sampling with pitfall traps. Zool Anz 202:177–184Google Scholar
  3. Agnarsson I (1996) Íslenskar köngulaer. Fjölrit Náttúrufraedistofnunar 31:1–175Google Scholar
  4. Bartoń K (2013) MuMIn: Multi-modal inference. R package version 1.9.5. http://CRAN.R-project.org/package=MUMIn
  5. Bell JR, Wheater CP, Cullen WR (2001) The implications of grassland and heathland management for the conservation of spider communities: a review. J Zool 255:377–387CrossRefGoogle Scholar
  6. Bonte D, Baert L, Maelfait JP (2002) Spider assemblage structure and stability in a heterogeneous coastal dune system (Belgium). J Arachnol 30:331–343CrossRefGoogle Scholar
  7. Bowden JJ, Buddle CM (2010a) Spider assemblages across elevational and latitudinal gradients in the Yukon Territory, Canada. Arctic 63:261–272CrossRefGoogle Scholar
  8. Bowden JJ, Buddle CM (2010b) Determinants of ground-dwelling spider assemblages at a regional scale in the Yukon Territory, Canada. Ecoscience 17:287–297CrossRefGoogle Scholar
  9. Brændegaard J (1946) The spiders (Araneina) of East Greenland: a faunistic and zoogeographical investigation. Meddelelser om Grønland 121:1–128Google Scholar
  10. Breymeyer A (1966) Relations between wandering spiders and other epigeic predatory Arthropoda. Ekologia Polska Seria A 14:27–71Google Scholar
  11. Bristowe WS (1933) The spiders of bear island. Norsk entomologisk tidsskrift 3:149–154Google Scholar
  12. Brown GR, Matthews IM (2016) A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol Evol 6(12):3953–3964PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buddle CM, Draney ML (2004) Phenology of linyphiids in an old-growth deciduous forest in central Alberta, Canada. J Arachnol 32:221–230CrossRefGoogle Scholar
  14. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  15. Calow P (ed) (1999) Blackwells concise encyclopedia of ecology. Blackwell Science Ltd, OxfordGoogle Scholar
  16. Carrel JE (1978) Behavioral thermoregulation during winter in an orb-weaving spider. Symp Zool Soc Lond 42:41–50Google Scholar
  17. Convey P, Coulson SJ, Worland MR Sjöblom A (under review) Implications of annual and shorter term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar BiolGoogle Scholar
  18. Cotton MJ (1979) A collection of spiders of North-East Greenland. Arctic 32:71–75CrossRefGoogle Scholar
  19. Coulson SJ (2007) The terrestrial and freshwater invertebrate fauna of the High Arctic archipelago of Svalbard. Zootaxa 1448:41–58Google Scholar
  20. Coulson SJ (2015) The alien terrestrial invertebrate fauna of the High Arctic archipelago of Svalbard: potential implications for the native flora and fauna. Polar Res 34:27364.  https://doi.org/10.3402/polar.v34.27364 CrossRefGoogle Scholar
  21. Coulson SJ, Refseth D (2004) The terrestrial and freshwater invertebrate fauna of Svalbard (and Jan Mayen). In: Prestrud P, Strøm H, Goldman HV (eds) A catalogue of the terrestrial and marine animals of Svalbard. Nor Polarinst Skr 201:57–122Google Scholar
  22. Coulson SJ, Hodkinson ID, Strathdee AT, Bale JS, Block W, Worland MR, Webb NR (1993) Simulated climate change: the interaction between vegetation type and microhabitat temperatures at Ny Ålesund, Svalbard. Polar Biol 13:67–70CrossRefGoogle Scholar
  23. Coulson SJ, Hodkinson ID, Webb NR (2003) Microscale distribution patterns in high Arctic soil microarthropod communities: the influence of plant species within the vegetation mosaic. Ecography 26:801–809CrossRefGoogle Scholar
  24. Coulson SJ, Ávila-Jiménez ML, Fjellberg A, Snazell R, Gwiazdowicz DJ (2011) On the Collembola, Araneae and Gamasida from the Kinnvika region of Nordaustlandet, Svalbard. Geogr Ann 93:253–257CrossRefGoogle Scholar
  25. Coulson SJ, Convey P, Aakra K, Aarvik L, Ávila-Jiménez ML, Babenko A, Biersma EM, Boström S, Brittain JE, Carlsson AM, Christoffersen KS, De Smet WH, Ekrem T, Fjellberg A, Füreder L, Gustafsson D, Gwiazdowicz DJ, Hansen LO, Holmstrup M, Hullé M, Kaczmarek Ł, Kolicka M, Kuklin V, Lakka H-K, Lebedeva N, Makarova O, Maraldo K, Melekhina E, Ødegaard F, Pilskog HE, Simon JC, Sohlenius B, Solhøy T, Søli G, Stur E, Tanaevitch A, Taskaeva A, Velle G, Zawierucha K, Zmudczyńska-Skarbek K (2014) The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol Biochem 68:440–470CrossRefGoogle Scholar
  26. Davies KF, Melbourne BA, McClenahan JL, Tuff T (2011) Statistical models for monitoring and predicting effects of climate change and invasion on the free-living insects and a spider from sub-Antarctic Heard Island. Polar Biol 34:119–125CrossRefGoogle Scholar
  27. DeVito J, Meik JM, Gerson MM, Formanowicz DR Jr (2004) Physiological tolerances of three sympatric riparian wolf spiders (Araneae: Lycosidae) correspond with microhabitat distributions. Can J Zool 82:1119–1125CrossRefGoogle Scholar
  28. Doane JF, Dondale CD (1979) Seasonal captures of spiders (Araneae) in a wheat field and its grassy borders in central Saskatchewan. Can Entomol 111:439–445CrossRefGoogle Scholar
  29. Duffey E (1956) Aerial dispersal in a known spider population. J Anim Ecol 25:85–111CrossRefGoogle Scholar
  30. Duffey E (1998) Aerial dispersal in spiders. In: Selden PA (ed) Proceedings of the 17th European Colloquium of Arachnology. British Arachnological Society, Burnham Beeches, pp 189–191Google Scholar
  31. Duffey E (2005) Regional variation of habitat tolerance by some European spiders (Araneae)—a review. Arachn Mitt 29:25–34Google Scholar
  32. Elvebakk A (1994) A survey of plant associations and alliances from Svalbard. J Veg Sci 5:791–802CrossRefGoogle Scholar
  33. Elvebakk A (2005) A vegetation map of Svalbard on the scale 1:3.5 mill. Phytocoenologia 35:951–967CrossRefGoogle Scholar
  34. Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448CrossRefGoogle Scholar
  35. Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Adv Meteorol.  https://doi.org/10.1155/2011/893790 CrossRefGoogle Scholar
  36. Freeman JA (1946) The distribution of spiders and mites up to 300 ft. in the air. J Anim Ecol 15:69–74CrossRefGoogle Scholar
  37. Frick H, Kropf C, Nentwig W (2007) Laboratory temperature preferences of the wolf spider Pardosa riparia (Araneae: Lycosidae). Bull Br arachnol Soc 14:45–48CrossRefGoogle Scholar
  38. Fridriksson S (1975) Surtsey. Evolution of life on a volcanic island, ButterworthsGoogle Scholar
  39. Glick PA (1939) The distribution of insects, spiders, and mites in the air. Tech Bull US Dep Agric 673:1–150Google Scholar
  40. Hågvar S, Hegstad A (1969) A sample of spiders (Araneida) from Svalbard. Nor Polarinst Årb, Norwegian Polar Institute, Oslo, pp 218–220Google Scholar
  41. Hansen RR, Hansen OLP, Bowden JJ, Normand S, Bay C, Sørensen JG, Høye TT (2016a) High spatial variation in terrestrial arthropod species diversity and composition near the Greenland ice cap. Polar Biol 39:2263.  https://doi.org/10.1007/s00300-016-1893-2 CrossRefGoogle Scholar
  42. Hansen RR, Hansen OLP, Bowden JJ, Treier UA, Normand S, Høye TT (2016b) Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities. Peer J 4:e2224.  https://doi.org/10.7717/peerj.2224 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Harwood JD, Sunderland KD, Symondson WOC (2001) Living where the food is: web location by linyphiid spiders in relation to prey availability in winter wheat. J Appl Ecol 38:88–99CrossRefGoogle Scholar
  44. Hawes TC (2007) Ballooning in High Arctic linyphiids: a case of behavioural atrophy? Arachnology 14:39–42CrossRefGoogle Scholar
  45. Hawes TC (2008) Aeolian fallout on recently deglaciated terrain in the high Arctic. Polar Biol 31:295–301CrossRefGoogle Scholar
  46. Heydemann B (1961) Untersuchungen über die Aktivitäts- und Besiedlungsdichte bei Epigäische Spinnen. Verh Deutsch Zool Ges Saarbrücken:538–556Google Scholar
  47. Hinz W (1976) Zur Ökologie der Tundra Zentralspitsbergen. Nor Polarinst Skr 163:1–47Google Scholar
  48. Hisdal V (1985) Geography of Svalbard. Norwegian Polar Institute, OsloGoogle Scholar
  49. Hodkinson ID (2013) Terrestrial and freshwater invertebrates. In: Meltofte H (ed) Arctic biodiversity assesment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, pp 194–223Google Scholar
  50. Hodkinson ID, Coulson SJ (2004) Are high Arctic terrestrial food chains really that simple—the Bear Island food web revisited. Oikos 106:427–431CrossRefGoogle Scholar
  51. Hodkinson ID, Coulson SJ, Harrison J, Webb NR (2001) What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the High Arctic—some counter intuitive ideas on community assembly. Oikos 95:349–352CrossRefGoogle Scholar
  52. Hodkinson ID, Webb NR, Coulson SJ (2002) Primary community assembly on land—the missing stages: why are the heterotrophic organisms always there first? J Ecol.  https://doi.org/10.1046/j.1365-2745.2002.00696.x CrossRefGoogle Scholar
  53. Hodkinson ID, Coulson SJ, Webb NR (2004) Invertebrate community assembly along proglacial chronosequences in the high Arctic. J Anim Ecol 73:556–568CrossRefGoogle Scholar
  54. Holm Å (1937) Zur Kenntnis der Spinnenfauna Spitzbergens und der Bären Insel. Arkiv för Zoologi 29:1–13Google Scholar
  55. Holm Å (1956) Notes on Arctic spiders of the genera Erigone Aud. and Hilaira Sim. Arkiv för Zoologi 9:453–468Google Scholar
  56. Holm Å (1958) The spiders of the Isfjord region on Spitsbergen. Zoologiska Bidrag Från Uppsala, Bd 33:29–67Google Scholar
  57. Holm Å (1960) Notes on Arctic spiders. Ark Zool 12:511–514Google Scholar
  58. Holm Å (1967) Spiders (Araneae) form West Greenland. Meddelelser om Grønland 184:1–99Google Scholar
  59. Høye TT, Forchhammer MC (2008) Phenology of High-Arctic arthropods: effects of climate on spatial, seasonal, and inter-annual variation. Adv Ecol Res 40:299–324CrossRefGoogle Scholar
  60. Humphreys WF (1987) The thermal biology of the wolf spider Lycosa tarentula (Araneae: Lycosidae) in northern Greece. Bull Br arachnol Soc 7:117–122Google Scholar
  61. Jackman S (2012) pscl: classes and methods for R developed in the Political Science Computational Laboratory, Standford University. Department of Political Science, Stanford University. Stanford, California. R version 1.04.4. http://pscl.standford.edu/
  62. Jiménez-Valverde A, Baselga A, Melic A, Txasko N (2010) Climate and regional beta-diversity gradients in spiders: dispersal capacity has nothing to say? Insect Conserv Divers 3:51–60CrossRefGoogle Scholar
  63. Johnson LR (2010) Implications of dispersal and life history strategies for the persistence of Linyphiid spider populations. Ecol Model 221:1138–1147CrossRefGoogle Scholar
  64. Jónsdóttir IS (2005) Terrestrial ecosystems on Svalbard: heterogeneity, complexity and fragility from an Arctic island perspective. Proc R Irish Acad 105:155–165CrossRefGoogle Scholar
  65. Koponen S (1980) Spider fauna in the Adventfjorden area, Spitsbergen. Rep Kevo Subarctic Res Stat 16:13–16Google Scholar
  66. Koponen S (1987) Communities of ground-living spiders in six habitats on a mountain in Quebec, Canada. Holarctic Ecol 10:278–285Google Scholar
  67. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574PubMedCrossRefGoogle Scholar
  68. Lafage D, Maugenest S, Bouzillé J-B, Pétillion J (2015) Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecol Res 30:1025–1035CrossRefGoogle Scholar
  69. Lincoln R, Boxshall G, Clark P (1998) A dictionary of ecology, evolution and systematics, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  70. Lindroth CH, Andersson H, Bodvarsson H, Richter SH (1973) Surtsey, Iceland. The development of a new fauna 1963–70. Terrestrial invertebrates. Entomologica Scandinavica Supplement 5:7–280Google Scholar
  71. Luff ML (1975) Some features influencing the efficiency of pitfall traps. Oecologia 19:345–347PubMedCrossRefGoogle Scholar
  72. Marshall SD, Rypstra AL (1999) Spider competition in structurally simple ecosystems. J Arachnol 27:343–350Google Scholar
  73. Marusik YM, Böcher J, Koponen S (2006) The collection of Greenland spiders (Aranei) kept in the Zoological Museum, University of Copenhagen. Arthropoda Selecta 15:59–80Google Scholar
  74. McCoy ED (1990) The distribution of insects along elevational gradients. Oikos 58:313–322CrossRefGoogle Scholar
  75. Migała K, Wojtuń B, Szymański W, Muskała P (2014) Soil moisture and temperature variation under different types of tundra vegetation during the growing season: a case study from the Fuglebekken catchment, SW Spitsbergen. CATENA 116:10–18CrossRefGoogle Scholar
  76. Moring JB, Stewart KW (1994) Habitat partitioning by the wolf spider (Araneae, Lycosidae) guild in streamside and riparian vegetation zones of the Conejos river, Colorado. J Arachnol 22:205–217Google Scholar
  77. Muma MH (1973) Comparison of ground surface spiders in four central Florida ecosystems. Fla Entomol 56:172–196CrossRefGoogle Scholar
  78. Otto C, Svensson BS (1982) Structure of communities of ground-living spiders along altitudinal gradients. Holarct Ecol 5:35–47Google Scholar
  79. Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488PubMedCrossRefGoogle Scholar
  80. Parker JR (1969) On the establishment of Cornicularia clavicornis Emerton (Araneae) as a British species. Bull Br arachnol Soc 1:49–54Google Scholar
  81. Peeters B, Veiberg V, Pedersen ÅØ, Stein A, Irvine RJ, Aanes R, Sæther B-E, Strand O, Hansen BB (2017) Climate and density dependence cause changes in adult sex ratio in a large Arctic herbivore. Ecosphere.  https://doi.org/10.1002/ecs2.1699 CrossRefGoogle Scholar
  82. Pétillon J, Georges A, Canard A, Lefeuvre J-C, Bakker JP, Ysnel F (2008) Influence of abiotic factors on spider and ground beetle communities in different salt-marsh systems. Basic Appl Ecol 9:743–751CrossRefGoogle Scholar
  83. Portela E, Willemart RH, Gasnier TR (2013) Soil type preference and the coexistence of two species of wandering spiders (Ctenus amphora and C. crulsi: Ctenidae) in a rainforest in central Amazonia. J Arachnol 41:85–87CrossRefGoogle Scholar
  84. Prieto-Benítez S, Méndez M (2011) Effects of land management on the abundance and richness of spider (Araneae): a meta-analysis. Biol Conserv 144:683–691CrossRefGoogle Scholar
  85. Ramade F (2002) Dictionnaire encyclopédique de l’écologie et des sciences de l’environnement, 2nd edn. Dunod, ParisGoogle Scholar
  86. R Core Team (2013) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/
  87. Řezáč M, Řezáčová V, Pekár S (2007) The distribution of purse-web Atypus spiders (Araneae: Mygalomorphae) in central Europe is constrained by microclimatic continentality and soil compactness. J Biogeogr 34:1016–1027CrossRefGoogle Scholar
  88. Roberts MJ (1995) Spiders of Britain and Northern Europe. Collins Field Guide. Harper Collins Publishers, New YorkGoogle Scholar
  89. Rushton SP, Eyre MD (1992) Grassland spider habitats in North-east England. J Biogeogr 19:99–108CrossRefGoogle Scholar
  90. Rypstra AL (1986) Web spiders in temperate and tropical forests: relative abundance and environmental correlates. Am Midl Nat 115:42–51CrossRefGoogle Scholar
  91. Saaristo MI, Koponen S (1998) A review of northern Canadian spiders of the genus Agyneta (Araneae, Linyphiidae), with descriptions of two new species. Can J Zool 76:566–583CrossRefGoogle Scholar
  92. Saska P, van der Werf W, Hemerik L, Luff ML, Hatten TD, Honek A (2013) Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction. J Appl Ecol 50:181–189PubMedCrossRefGoogle Scholar
  93. Scherrer D, Körner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Change Biol 16:2602–2613Google Scholar
  94. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416CrossRefGoogle Scholar
  95. Schmoller R (1970) Life histories of alpine tundra Arachnida in Colorado. Am Midl Nat 83:119–133CrossRefGoogle Scholar
  96. Seniczak S, Seniczak A, Gwiazdowicz DJ, Coulson SJ (2014) Community structure of Oribatid and Gamasid mites (Acari) in moss-grass tundra in Svalbard (Spitsbergen, Norway). Arct Antarc Alp Res 46:591–599CrossRefGoogle Scholar
  97. Seniczak S, Seniczak A, Coulson SJ (2015) Morphology, distribution, and biology of Mycobates sarekensis (Acari: Oribatida: Punctoribatidae). Int J Acarology 41:663–675CrossRefGoogle Scholar
  98. Sikes DS, Draney ML, Fleshman B (2013) Unexpectedly high among-habitat spider (Araneae) faunal diversity from the Arctic Long-Term Experimental Research (LTER) field station at Toolik Lake, Alaska, United States of America. Can Entomol 145:219–226CrossRefGoogle Scholar
  99. Solstad H, Eidesen PB, Little L, Elven R (2014) To valmue-arterpå Svalbard, oglittom fjell-ogpolarvalmuer. Blyttia 72:187–196Google Scholar
  100. Sømme L, Block W (1991) Adaptations to alpine and polar environments in insects and other terrestrial arthropods. In: Lee RE Jr, Denlinger DL (eds) Insects at low temperature. Chapman and Hall, New York and London, pp 318–359CrossRefGoogle Scholar
  101. Stein A, Ims RA, Albon SD, Fuglei E, Irvine RJ, Ropstad E, Halvorsen O, Langvatn R, Loe LE, Veiberg V, Yoccoz NG (2012) Congruent responses to weather variability in high arctic herbivores. Biol Lett 8:1002–1005CrossRefGoogle Scholar
  102. Summerhayes VS, Elton CS (1923) Contributions to the ecology of Spitsbergen and Bear Island. J Ecol 11:214–286CrossRefGoogle Scholar
  103. Suominen O, Niemelä J, Martikainen P, Niemelä P, Kojola I (2003) Impact of reindeer grazing on ground-dwelling Carabidae and Curculionidae assemblages in Lapland. Ecography 26:503–513CrossRefGoogle Scholar
  104. Tambs-Lyche H (1967) Notes on the distribution of some Arctic spiders. Astarte 28:1–13Google Scholar
  105. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  106. Thompson B, Ball OJ-P, Fitzgerald BM (2015) Niche partitioning in two coexisting species of Pahoroides (Araneae: Synotaxidae) NZ. J Zool 42:17–26Google Scholar
  107. Tolbert WW (1975) The effects of slope exposure on arthropod distribution patterns. Am Midl Nat 94:38–53CrossRefGoogle Scholar
  108. Topping CJ, Sunderland KD (1992) Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. J Appl Ecol 29:485–491CrossRefGoogle Scholar
  109. Uetz GW (1977) Coexistence in a guild of wandering spiders. J Anim Ecol 46:531–541CrossRefGoogle Scholar
  110. Uetz GW (1979) The influence of variation in litter habitats on spider communities. Oecologia 40:29–42PubMedCrossRefGoogle Scholar
  111. Venables WN, Ripley BD (2002) Modern applied statistics with S.4. Springer, New YorkGoogle Scholar
  112. Williams G (1962) Seasonal and diurnal activity of harvestmen (Phalangida) and spiders (Araneida) in contrasted habitats. J Anim Ecol 31:21–42CrossRefGoogle Scholar
  113. Wirta HK, Hebert PDN, Kaartinen R, Prosser SW, Várkonyi G, Roslin T (2014) Complementary molecular information changes our perception of food web structure. Proc Natl Acad Sci USA 111:1885–1890PubMedPubMedCentralCrossRefGoogle Scholar
  114. World Spider Catalog (2017) World Spider Catalog. Natural History Museum Bern, http://wsc.nmbe.ch, version 17.5, Accessed 5 January 2017

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Arctic BiologyUniversity Centre in SvalbardSvalbardNorway
  2. 2.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
  3. 3.Midt-Troms MuseumStorsteinnesNorway
  4. 4.ArtDatabanken, The Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations