Morphometric, molecular and histopathologic description of hepatic infection by Orthosplanchnus arcticus (Trematoda: Digenea: Brachycladiidae) in ringed seals (Pusa hispida) from Northwest Greenland

  • Emilie Andersen-Ranberg
  • Kristina Lehnert
  • Páll S. Leifsson
  • Rune Dietz
  • Steen Andersen
  • Ursula Siebert
  • Lena Measures
  • Christian Sonne
Short Note

Abstract

For the first time in > 30 years of routine sampling under the Arctic Monitoring and Assessment Program, a parasite was found in the liver of ringed seals (Phoca hispida) collected near Qaanaaq (Thule), Northwest Greenland, in 2008 and 2014. Concerns regarding changes to parasite occurrence, possibly related to climate change and bioaccumulation of immunomodulating anthropogenic pollutants, spurred further investigations into parasite characterization, and implications for wildlife health and seal hunters. Microscopic, molecular, and morphometric analyses are presented herein. Of 40 seals, 6 (15%) were infected, and 5 of 6 of these seals had severe infections. The parasite was identified morphologically as Orthosplanchnus arcticus Odhner, 1905 (Trematoda; Digenea: Brachycladiidae). Macro- and microscopic pathologic study indicated mild-to-severe biliary hyperplasia associated, stasis associated, and fibrosis associated with trematode infections. Molecular analysis of the trematode confirmed its classification within the Brachycladiidae using sequencing and comparing Internal Transcribed Spacer-1, mitochondrial-NADH Dehydrogenase 3, 18S ribosomal DNA, and Cyclooxygenase-1 regions. This is the first ever report of O. arcticus in ringed seals from Qaanaaq and is one of the most northern records of this parasite. We found significant liver pathology in severely infected seals, but its effects on health of seals in this population are unknown. Host-specificity and the lifecycle of O. arcticus are unknown, but transmission may involve subsistence and commercially harvested Arctic fish species. Further work is needed to answer these questions. Surveying parasites in Arctic wildlife is important in order to assess potential effects on wildlife and human health (i.e., zoonoses).

Keywords

Trematoda Molecular identification PCR Morphometrics MT-ND3 Pinniped 

Notes

Acknowledgements

Danish Cooperation for Environment in the Arctic (Dancea), Infectious Zoonotic Diseases Transmissible from harvested Wildlife to humans in the European Arctic (ZORRO) supported by Nordic Council and the North Water Project (NOW) supported by the Velux Foundations and the Carlsberg Foundation are acknowledged for financial support, and local hunters for field support. We thank the Inuit hunter of Arctic Bay for providing an infected liver from a ringed seal hunted near the community in 1992.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

300_2017_2245_MOESM1_ESM.jpg (1.1 mb)
Online Resource 1 Map of Greenland indicating the sampling sites for ringed seals (Pusa hispida): within 10 km radius of the settlements Qaanaaq (Thule) and Qeqertarsuaq (Godhavn). (JPEG 1168 kb)
300_2017_2245_MOESM2_ESM.docx (25 kb)
Online Resource 2 Supplementary material 2 (DOCX 24 kb)
300_2017_2245_MOESM3_ESM.jpg (87 kb)
Online Resource 3 Phylogenetic trees inferred from ND3 sequences of available sequences of Brachycladiidae from NCBI Genbank using the tree method of Maximum Likelihood. Left: phylogenetic tree (Fernández et al. 2000). Right: phylogenetic tree (present study). Note that right and left trees are similar except that with data from Orthosplanchnus arcticus a new branch is introduced and the position of Synthesium tursionis is changed. All accession numbers can be found in Fernández et al. 2000. (JPEG 87 kb)

References

  1. Adams AM, Rausch RL (1989) A revision of the genus Orthosplanchnus Odhner, 1905 with consideration of the genera Odhneriella Skriabin, 1915 and Hadwenius Price, 1932 (Digenea: Campulidae). Can J Zool 67:1268–1278CrossRefGoogle Scholar
  2. AMAP, Arctic Monitoring and Assessment Programme (2002) AMAP assessment 2002—human health in the arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. www.amap.no. Accessed 1 Aug 2015
  3. Bäcklin BM, Moraeus M, Kauhala K, Isomurso M (2013) Nutritional status of seals. HELCOM Core Indicator Report. http://helcom.fi/Core%20Indicators/HELCOM-CoreIndicator-Nutritional_status_of_seals.pdf. Accessed 3 Mar 2017
  4. Bengtson JL, Hiruki-Raring LM, Simpkins MA, Boveng PL (2005) Ringed and bearded seal densities in the eastern Chukchi Sea, 1999–2000. Polar Biol 28:833–845CrossRefGoogle Scholar
  5. Bishop L (1979) Parasite-related lesions in bearded seal, Erignathus barbatus. J Wild Dis 15:285–293CrossRefGoogle Scholar
  6. Boveng PL, Bengtson JL, Buckley TW et al. (2008) Status review of the ribbon seal Histriophoca fascata. National Technical Information Service. https://www.researchgate.net/profile/Michael_Cameron3/publication/242476692_Status_Review_of_the_Ribbon_Seal_Histriophoca_fasciata/links/54ad803b0cf2828b29fca754.pdf. Accessed 14 Aug 2015
  7. Brown D, McIntyre R, Delli Quadri C, Schroeder R (1960) Health problems of captive dolphins and seals. J Am Vet Med Assoc 137:534–538Google Scholar
  8. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583CrossRefPubMedGoogle Scholar
  9. Coordinates. https://www.gps-latitude-longitude.com. Accessed Mar 2017. Search words: “Qaanaaq” and “Qeqertarsuaq”
  10. Dailey L (2001) Parasites of Pinnipeds. In: Dierauf LA, Gulland F (eds) CRC handbook of marine mammal medicine: health, disease, and rehabilitation, 2nd edn. CRC Press, Boca Raton, p 372Google Scholar
  11. Delyamure S (1968) Helminthofauna of marine mammals (ecology and phylogeny). Akademiia Nauk SSSR, Moscow, pp 1–517Google Scholar
  12. Dietz R, Heide-Jørgensen M, Härkönen T, Teilmann J, Valentin N (1991) Age determination of European harbour seal, Phoca vitulina. Sarsia 76:17–21CrossRefGoogle Scholar
  13. Duguy R, Robineau D (1992) Robben. In: Niethammer J, Krapp F (eds) Handbuch der Säugetiere Europas. Aula Verlag, Wiesbaden, pp 42–139Google Scholar
  14. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  15. Felix JR (2013) Reported incidences of parasitic infections in marine mammals from 1892 to 1978. Zea Books, Lincoln, pp 100–149Google Scholar
  16. Fernández M, Aznar F, Latorre A, Raga J (1998) Molecular phylogeny of the families Campulidae and Nasitrematidae (Trematoda) based on mtDNA sequence comparison. Int J Parasitol 28:767–775CrossRefPubMedGoogle Scholar
  17. Fernández M, Aznar F, Raga J, Latorre A (2000) The origin of Lecithodesmus (Digenea: Campulidae) based on ND3 gene comparison. J Parasitol 86:850–852CrossRefPubMedGoogle Scholar
  18. Furgal CM, Innes S, Kovacs KM (2002) Inuit spring hunting techniques and local knowledge of the ringed seal in Arctic Bay (Ikpiarjuk), Nunavut. Polar Res 21:1–16CrossRefGoogle Scholar
  19. Gibson DI (2005) Family Brachycladiidae Odhner, 1905. In: Jones A, Bray RA, Gibson DI (eds) Keys to the Trematoda, vol 2. CABI Publishing and The Natural History Museum, Wallingford, pp 641–652CrossRefGoogle Scholar
  20. Gibson DI, Bray R (1997) Oschmarinella albamarina (Treshchev, 1968) n comb, a liver fluke from the killer whale Orcinus orca off the British coast. Syst Parasitol 36:39–45CrossRefGoogle Scholar
  21. Hovelsrud GK, McKenna M, Huntington HP (2008) Marine mammal harvests and other interactions with humans. Ecol Appl 18:135–147CrossRefGoogle Scholar
  22. Huffman J (2014) Selected wildlife Trematodiasis. In: Toledo R, Fried B (eds) Digenetic Trematodes. Springer, New York, pp 429–439Google Scholar
  23. Jenkins EJ, Castrodale LJ, de Rosemond SJC et al (2013) Tradition and transition: parasitic zoonoses of people and animals in Alaska, Northern Canada, and Greenland. Adv Parasitol 82:33–204CrossRefPubMedGoogle Scholar
  24. Jones A, Bray RA, Gibson DI (2005) Keys to the Trematoda, vol 2. CABI Publishing, LondonCrossRefGoogle Scholar
  25. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993CrossRefPubMedGoogle Scholar
  26. Kovacs KM, Lydersen C, Overland JE, Moore SE (2011) Impacts of changing sea-ice conditions on Arctic marine mammals. Mar Biodivers 41:181–194CrossRefGoogle Scholar
  27. Kuhnlein H, Barthet V, Farren A, Falahi E, Leggee D, Receveur O, Berti P (2006) Vitamins A, D, and E in Canadian Arctic traditional food and adult diets. J Food Compos Anal 19:495–506CrossRefGoogle Scholar
  28. Lauckner G (1985) Diseases of mammalia: Pinnipedia. In: Kinne O (ed) Reptilia, aves, mammalia vol IV, part II. Biologische Anstalt Helgoland, Hamburg, pp 683–772. http://www.int-res.com/book-series/diseases-of-marine-animals-books/
  29. Lehnert K, Raga J, Siebert U (2005) Macroparasites in stranded and bycaught harbour porpoises from German and Norwegian waters. Dis Aquat Org 64:265–269CrossRefPubMedGoogle Scholar
  30. Lehnert K, Seibel H, Hasselmeier I et al (2014) Increase in parasite burden and associated pathology in harbour porpoises (Phocoena phocoena) in West Greenland. Polar Biol 37:321–331CrossRefGoogle Scholar
  31. Luna HT (1960) Manual of histological staining methods of the Armed Forces Institute of Pathology, 3rd edn. McGraw Hill, New YorkGoogle Scholar
  32. Lyon H, Andersen AP, Hasselager E et al (1991) Theory and strategy in Histochemistry. Springer Verlag, BerlinCrossRefGoogle Scholar
  33. Marigo J, Rosas FC, Andrade ALV, Oliveira MR, Dias RA, Catão-Dias JL (2002) Parasites of franciscana (Pontoporia blainvillei) from São Paulo and Paraná states, Brazil. Lat Am J Aquat Mamm 1:115–122CrossRefGoogle Scholar
  34. Marigo J, Paulo Vicente AC, Schifino Valente AL, Measures L, Portes Santos C (2008) Redescription of Synthesium pontoporiae n. comb. with Notes on S. tursionis and S. seymouri n. comb. (Digenea: Brachycladiidae Odhner, 1905). J Parasitol 94:505–514CrossRefPubMedGoogle Scholar
  35. Neimanis AS, Moraeus C, Bergman A, Bignert A, Höglund J, Lundström K et al (2016) Emergence of the Zoonotic Biliary Trematode Pseudamphistomum truncatumin Grey Seals (Halichoerus grypus) in the Baltic Sea. PLoS ONE 11:e0164782CrossRefPubMedPubMedCentralGoogle Scholar
  36. Odhner T (1905) Trematoden des arktischen Gebietes. Gustav Fischer, UppsalaCrossRefGoogle Scholar
  37. Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol 33:733–755CrossRefPubMedGoogle Scholar
  38. Poloczanska ES, Brown CJ, Sydeman WJ et al (2013) Global imprint of climate change on marine life. Nat Clim Change 3:919–925CrossRefGoogle Scholar
  39. Rigét F, Bossi R, Sonne C, Vorkamp K, Dietz R (2013) Trends of perfluorochemicals in Greenland ringed seals and polar bears: indications of shifts to decreasing trends. Chemosphere 93:1607–1614CrossRefPubMedGoogle Scholar
  40. Rohde K (2005) Marine parasitology. Csiro Publishing, CollingwoodCrossRefGoogle Scholar
  41. Schwanke E (2015) Vorkommen, Bedeutung, morphologische und molekularbiologische Charakterisierung der Bandwürmer (Cestoda) in marinen Säugetieren aus der Nord- und Ostsee. MS thesis, Universität Rostock. Contact University of Rostock. https://www.uni-rostock.de/, or first author for a copy
  42. Siebert U, Wünschmann A, Weiss R, Frank H, Benke H, Frese K (2001) Post-mortem findings in harbour porpoises (Phocoena phocoena) from the German North and Baltic Seas. J Comp Pathol 124:102–114CrossRefPubMedGoogle Scholar
  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yamaguti S (1958) The digenetic trematodes of vertebrates. Systema Helminthum. Interscience Publishers, New York, pp 1–1590Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine HannoverBüsumGermany
  2. 2.Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
  3. 3.Department of Bioscience, Faculty of Science and Technology, Arctic Research Centre (ARC)Aarhus UniversityRoskildeDenmark
  4. 4.Hunters ScienceCopenhagen NDenmark
  5. 5.Maurice Lamontagne InstituteFisheries and Oceans CanadaMont-JoliCanada

Personalised recommendations