Advertisement

Polar Biology

, Volume 41, Issue 5, pp 827–837 | Cite as

Comparative phylogeography of six red algae along the Antarctic Peninsula: extreme genetic depletion linked to historical bottlenecks and recent expansion

  • Marie-Laure Guillemin
  • Hélène Dubrasquet
  • Janette Reyes
  • Myriam Valero
Original Paper

Abstract

In the Southern Ocean, rapid climatic fluctuations during the Quaternary are thought to have induced range contractions and bottlenecks, thereby instigating genetic divergence and potentially even speciation of marine species. Specifically, ice scouring during glacial events may have had drastic impacts on seaweed communities, thus leading to genetic diversification between algal populations that persisted on the Antarctic shelf in small isolated refugia. Using the mitochondrial Cytochrome c Oxidase I (COI) gene and 279 individual macroalgal specimens collected from five geographic areas along the coasts of the Antarctic Peninsula and the South Shetland Islands, we studied the genetic diversity of six commonly encountered species of red algae. All six algae were characterized by very low genetic diversity, and we found a significant signature of recent population expansion of a single haplotype encountered over more than 450 km. These results reflect the drastic impact of historical perturbations on populations of Antarctic seaweeds. We propose that genetic drift during a glacial bottleneck had a strong effect and could have been amplified by gene surfing effects during spatial expansion after ice sheet retreat. This led to the rapid spread of a single haplotype in the recolonized region. Unfortunately, the very low level of genetic diversity encountered did not allow us to precisely pinpoint the putative location of the glacial refugium inhabited by Antarctic seaweeds. Despite this, we propose that future studies should test the role of active volcanic areas, such as Deception Island, as long-term refugia in the region.

Keywords

Antarctic Peninsula South Shetland COI Rhodophyta Glaciation Pleistocene Refugia 

Notes

Acknowledgements

This research was supported by the Instituto Antártico Chileno (INACH) T_16-11 and RG_15-16 projects, and sampling in King George Island was funded by the Project Anillo ART1101 from the Comisión Nacional de Investigación Cientıfíca y Tecnológica. Additional support came from the International Research Network “Diversity, Evolution, and Biotechnology of Marine Algae” (GDRI No. 0803) and from the Centro FONDAP IDEAL No. 15150003. The authors thank P. Brunning, J. L. Kappes, T. Heran, Y. Henriquez, and L. Vallejos for their help in the field. The authors would also like to thank the Chilean Navy (especially the captain and crew of the ships, Almirante Oscar Viel and Lautaro), the staff from the Chilean Army in the O’Higgins base and the Air Force of Chile (FACh) for the logistic support of our fieldwork in sub-Antarctica and Antarctica.

Supplementary material

300_2017_2244_MOESM1_ESM.pptx (169 kb)
Supplementary material 1 (PPTX 169 kb)

References

  1. Allcock AL, Strugnell JM (2012) Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol Evol 27:520–528CrossRefPubMedGoogle Scholar
  2. Allcock AL, Barratt I, Eleaume M, Linse K, Norman MD, Smith PJ, Steinke D, Stevens DW, Strugnell JM (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Res II 58:242–249CrossRefGoogle Scholar
  3. Amsler CD, McClintock JB, Baker BJ (2014) Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. J Phycol 50:1–10CrossRefPubMedGoogle Scholar
  4. Anderson JB, Shipp SS, Lowe AL, Wellner JS, Mosola AB (2002) The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quat Sci Rev 21:49–70CrossRefGoogle Scholar
  5. April J, Hanner RH, Dion-Côté AM, Bernatchez L (2013) Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes. Mol Ecol 22:409–422CrossRefPubMedGoogle Scholar
  6. Aris-Brosou S, Excoffier L (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol Biol Evol 13:494–504CrossRefPubMedGoogle Scholar
  7. Arntz WE (2005) The Magellan-Antarctic connection: links and frontiers at high latitudes. Sci Mar 69:359–365Google Scholar
  8. Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, CambridgeGoogle Scholar
  9. Bandelt HJ, Forster P, Röhl A (1999) Median-Joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  10. Billard E, Reyes J, Mansilla A, Faugeron S, Guillemin M-L (2015) Deep genetic divergence between austral populations of the red alga Gigartina skottsbergii reveals a cryptic species endemic to the Antarctic continent. Polar Biol 38:2021–2034CrossRefGoogle Scholar
  11. Bortolotto E, Bucklin A, Mezzavilla M, Zane L, Patarnello T (2011) Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba. BMC Genet 12:32CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clarke A, Crame JA (2010) Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philos Trans R Soc Lond Ser B Biol Sci 365:3655–3666CrossRefGoogle Scholar
  13. Clarke A, Crame JA, Stromberg JO, Barker PF (1992) The Southern Ocean benthic fauna and climate change: a historical perspective [and discussion]. Philos Trans R Soc Lond Ser B Biol Sci 338:299–309CrossRefGoogle Scholar
  14. Cofaigh CÓ, Davies BJ, Livingstone SJ, Smith JA, Johnson JS et al (2014) Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quat Sci Rev 100:87–110CrossRefGoogle Scholar
  15. Convey P, Stevens M, Hodgson D, Smellie J, Hillenbrand C, Barnes D, Clarke A, Pugh P, Linse K, Cary S (2009) Exploring biological constraints on the glacial history of Antarctica. Quat Sci Rev 28:3035–3048CrossRefGoogle Scholar
  16. Dornburg A, Federman S, Eytan RI, Near TJ (2016) Cryptic species diversity in sub-Antarctic islands: a case study of Lepidonotothen. Mol Phyl Evol 104:32–43CrossRefGoogle Scholar
  17. Dowling DK, Friberg U, Lindell J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol 23:546–554CrossRefPubMedGoogle Scholar
  18. Durand JD, Blel H, Shen KN, Koutrakis ET, Guinand B (2013) Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: a single mitochondrial clade and many nuclear barriers. Mar Ecol Prog Ser 474:243–261CrossRefGoogle Scholar
  19. Durrant H, Burridge CP, Kelaher BP, Barrett NS, Edgar GJ, Coleman MA (2014) Implications of macroalgal isolation by distance for networks of marine protected areas. Conserv Biol 28:438–445CrossRefPubMedGoogle Scholar
  20. Excoffier L, Lisher H (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:56Google Scholar
  21. Excoffier E, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351CrossRefPubMedGoogle Scholar
  22. Fahrbach E (2006) The expedition ANTARKTIS-XXII/3 of the research vessel “Polarstern” in 2005 (Ed). Ber Polar Meeresforsch (Rep Polar Mar Res) 533:1–246Google Scholar
  23. Faugeron S, Valero M, Destombe C, Martínez EA, Correa JA (2001) Hierarchical spatial structure and discriminant analysis of genetic diversity in the red alga Mazzaella laminarioides (Gigartinales, Rhodophyta). J Phycol 37:705–716CrossRefGoogle Scholar
  24. Fraser CI (2016) Change in Southern Hemisphere intertidal communities through climate cycles: the role of dispersing algae. In: Hu Z-M, Fraser C (eds) Seaweed Phylogeography. Springer, NetherlandsGoogle Scholar
  25. Fraser CI, Spencer HG, Waters JM (2009) Glacial oceanographic contrasts explain phylogeography of Australian bull kelp. Mol Ecol 18:2287–2296CrossRefPubMedGoogle Scholar
  26. Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471CrossRefPubMedGoogle Scholar
  27. Fraser CI, Zuccarello GC, Spencer HG, Salvatore LC, Garcia GR, Waters JM (2013) Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. PLoS ONE 8:e69138CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive glacial cycles. Proc R Soc B 111:5634–5639Google Scholar
  29. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  30. González-Wevar CA, David B, Poulin E (2011) Phylogeography and demographic inference in Nacella (Patinigera) concinna (Strebel, 1908) in the western Antarctic Peninsula. Deep-Sea Res II 58:220–229CrossRefGoogle Scholar
  31. González-Wevar CA, Chown SL, Morley S, Coria N, Saucéde T, Poulin E (2016) Out of Antarctica: quaternary colonization of sub-Antarctic Marion Island by the limpet genus Nacella (Patellogastropoda: Nacellidae). Polar Biol 39:77–89CrossRefGoogle Scholar
  32. Goodall-Copestake WP, Perez-Espona S, Clark MS, Murphy EJ, Seear PJ, Tarling GA (2010) Swarms of diversity at the gene cox1 in Antarctic krill. Heredity 104:513–518CrossRefPubMedGoogle Scholar
  33. Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564CrossRefGoogle Scholar
  34. Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137CrossRefPubMedGoogle Scholar
  35. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600PubMedGoogle Scholar
  36. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond Ser B Biol Sci 359:183–195CrossRefGoogle Scholar
  37. Ho S, Lanfear R, Bromham Phillips LMJ, Soubrier J, Rodrigo AG, Cooper A (2011) Time-dependent rates of molecular evolution. Mol Ecol 20:3087–3101CrossRefPubMedGoogle Scholar
  38. Hoffman JI, Clarke A, Linse K, Peck LS (2011) Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar Biol 158:287–296CrossRefGoogle Scholar
  39. Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bot Mar 52: 509–534Google Scholar
  40. Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the drake passage in the Southern Ocean. J Hered 99:137–148CrossRefPubMedGoogle Scholar
  41. Janosik AM, Halanych KM (2010) Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integr Comp Biol 50:981–992CrossRefPubMedGoogle Scholar
  42. Janosik AM, Mahon AR, Halanych KM (2011) Evolutionary history of Southern Ocean Odontaster sea star species (Odontasteridae; Asteroidea). Polar Biol 34:575–586CrossRefGoogle Scholar
  43. Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020CrossRefGoogle Scholar
  44. Knapp S, Mallet J (2003) Refuting refugia? Science 300:71–72CrossRefPubMedGoogle Scholar
  45. Macaya EC, Zuccarello GC (2010) Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser 420:103–112CrossRefGoogle Scholar
  46. Macaya EC, López B, Tala F, Tellier F, Thiel M (2016) Float and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In: Hu Z-M, Fraser C (eds) Seaweed Phylogeography. Springer, NetherlandsGoogle Scholar
  47. Mahon AR, Arango CP, Halanych KM (2008) Genetic diversity of Nymphon (Arthropoda: Pycnogonida: Nymphonidae) along the Antarctic Peninsula with a focus on Nymphon australe Hodgson 1902. Mar Biol 155:315–323CrossRefGoogle Scholar
  48. Moffat C, Beardsley RC, Owen B, van Lipzig N (2008) A first description of the Antarctic Peninsula Coastal Current. Deep-Sea Res II 55:277–293CrossRefGoogle Scholar
  49. Montecinos A, Broitman BR, Faugeron S, Haye PA, Tellier F, Guillemin ML (2012) Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east Pacific. BMC Evol Biol 12:17CrossRefGoogle Scholar
  50. Muangmai N, West JA, Zuccarello GC (2014) Evolution of four Southern Hemisphere Bostrychia (Rhodomelaceae, Rhodophyta) species: phylogeny, species delimitation and divergence times. Phycologia 53:593–601CrossRefGoogle Scholar
  51. Neiva J, Pearson G, Valero M, Serrao E (2010) Surfing the wave on a borrowed board: range expansion and spread of introgressed organellar genomes in the seaweed Fucus ceranoides L. Mol Ecol 19:4812–4822CrossRefPubMedGoogle Scholar
  52. Neiva J, Pearson GA, Valero M, Serrao EA (2012) Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L. BMC Evol Biol 12:78CrossRefPubMedPubMedCentralGoogle Scholar
  53. Norris RD, Hull PM (2012) The temporal dimension of marine speciation. Evol Ecol 26:393–415CrossRefGoogle Scholar
  54. O’Loughlin MP, Paulay G, Davey N, Michonneau F (2011) The Antarctic region as a marine biodiversity hotspot for echinoderms: diversity and diversification of sea cucumbers. Deep Sea Res Part II 58:264–275CrossRefGoogle Scholar
  55. Payo DA, Leliaert F, Verbruggen H, D’hondt S, Calumpong HP, De Clerck O (2013) Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proc R Soc B 280:20122660CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pellizzari F, Silva MC, Silva EM, Medeiros A, Oliveira MC, Yokoya NS, Pupo D, Rosa LH, Colepicolo P (2017) Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: an updated database for environmental monitoring under climate change scenarios. Polar Biol.  https://doi.org/10.1007/s00300-017-2092-5 Google Scholar
  57. Quartino ML, Deregibus D, Campana GL, Latorre GEJ, Momo FR (2013) Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands). Antarctica. PLoS One 8:e58223CrossRefPubMedGoogle Scholar
  58. Raupach MJ, Thatje S, Dambach J, Rehm P, Misof B, Leese F (2010) Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar Biol 157:1783–1797CrossRefGoogle Scholar
  59. Riesgo A, Taboada S, Avila C (2015) Evolutionary patterns in Antarctic marine invertebrates: an update on molecular studies. Mar Genom 23:1–13CrossRefGoogle Scholar
  60. Roger AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569Google Scholar
  61. Rozas J, Sánchez-DeI Barrio JC, Messeguer X, Rozas R (2003) DnaSP DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  62. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans R Soc Lond Ser B Biol Sci 360:1879–1888CrossRefGoogle Scholar
  63. Savidge DK, Amft JA (2009) Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects. Deep-Sea Res I 56:1633–1655CrossRefGoogle Scholar
  64. Schoville SD, Roderick GK, Kavanaugh DH (2012) Testing the ‘Pleistocene species pump’ in alpine habitats: lineage diversification of flightless ground beetles (Coleoptera: Carabidae: Nebria) in relation to altitudinal zonation. Biol J Linn Soc 107:95–111CrossRefGoogle Scholar
  65. Simms AR, Milliken KT, Anderson JB, Wellner JS (2011) The marine record of deglaciation of the South Shetland Islands, Antarctica since the Last Glacial Maximum. Quat Sci Rev 30:1583–1601CrossRefGoogle Scholar
  66. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  67. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  68. Thatje S, Hillenbrand C-D, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540CrossRefPubMedGoogle Scholar
  69. Thatje S, Hillenbrand CD, Mackensen A, Larter R (2008) Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89:682–692CrossRefPubMedGoogle Scholar
  70. Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117CrossRefPubMedGoogle Scholar
  71. Valero M, Destombe C, Mauger S, Ribout C, Engel CR, Daguin-Thiebaut C, Tellier F (2011) Using genetic tools for sustainable management of kelps: a literature review and the example of Laminaria digitata. Cah Biol Mar 52:467Google Scholar
  72. Verheye ML, Backeljau T, d’Acoz CDU (2016) Looking beneath the tip of the iceberg: diversification of the genus Epimeria on the Antarctic shelf (Crustacea, Amphipoda). Polar Biol 39:925–945CrossRefGoogle Scholar
  73. Waters JM, Fraser CI, Hewitt GM (2013) Founder takes all: density-dependent processes structure biodiversity. Trends Ecol Evol 28:78–85CrossRefPubMedGoogle Scholar
  74. Weir JT, Schluter D (2004) Ice sheets promote speciation in boreal birds. Proc R Soc B 271:1881–1887CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wiencke C, Clayton M (2002) Antarctic seaweeds. In: Wägele JW (ed) Synopsis of the Antarctic Benthos. ARG Gantner, RuggellGoogle Scholar
  76. Wiencke C, Amsler CD, Clayton MN (2014) Macroalgae. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic Atlas of the Southern Ocean. SCAR, CambridgeGoogle Scholar
  77. Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the ‘‘circumpolar’’ crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904CrossRefGoogle Scholar
  78. Wilson NG, Schrodl M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  2. 2.CNRS, Sorbonne Universités, UPMC University Paris VI, PUC, UACH, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de RoscoffRoscoffFrance
  3. 3.Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)ValdiviaChile

Personalised recommendations