Polar Biology

, Volume 41, Issue 4, pp 619–627 | Cite as

High goose abundance reduces nest predation risk in a simple rodent-free high-Arctic ecosystem

  • Åshild Ø. PedersenEmail author
  • Jennifer Stien
  • Pernille B. Eidesen
  • Rolf A. Ims
  • Jane U. Jepsen
  • Audun Stien
  • Ingunn Tombre
  • Eva Fuglei
Original Paper


Breeding geese are the preferred prey of the Arctic fox Vulpes lagopus in the high-Arctic Svalbard archipelago. According to the apparent competition hypothesis (ACH), less-abundant prey species (e.g. ptarmigan, waders and small passerines) will experience higher predation rates when breeding in association with the more common prey (geese), due to spill-over predation by the shared predator. As many of these less-abundant species are endemic and/or red-listed, increased predation can have negative repercussions on their populations. We used a one-year baited artificial nest study to assess relative nest predation risk on Svalbard Rock Ptarmigan Lagopus muta hyperborea, small waders (Purple Sandpiper Calidris maritima, Dunlin Calidris alpina, plovers Charadrius spp., and phalaropes Phalaropus spp.) and Snow bunting Plectrophenax nivalis in two study locations contrasted by nesting density of Arctic breeding geese (Pink-footed Goose Anser brachyrhynchus and Barnacle Goose Branta leucopsis). We predicted higher predation risk for the less-abundant species in the study location with higher goose abundance. However, we found that relative nest predation risk was lower in the study location with higher goose abundance, thus being compatible with apparent mutualism and/or prey swamping mechanisms. Our results contrast with those from more structurally complex Arctic ecosystems and suggest that allochtonous subsidies from temperate ecosystems structure the predation pattern in this high-Arctic tundra ecosystem.


Apparent competition Arctic fox V. lagopus Artificial nest Predator Pink-footed Goose Svalbard 



Funding for this study was provided by the Fram Centre, the Norwegian Polar Institute, the Norwegian Institute for Nature Research and the University Centre in Svalbard. We thank the field assistants for their hard work in the field: Kaisa Boll, Daniels Karin Amby, Charmain Hamilton, Aino M. Kokkonen, Inka Lipasti, Yann Rashid, Silje Rekdal Larsen and Simon Rilling. We also thank Jesper Madsen and two anonymous reviewers and the chief-editor, Dieter Piepenburg, for valuable comments on the earlier version of the manuscript; Virve Ravolainen for assistance with the vegetation data; and Oddveig Øien Ørvoll for graphical design of maps. The study complied with the current regulations in the Svalbard Environmental Protection Act.


  1. Aanes R, Saether BE, Solberg EJ, Aanes S, Strand O, Oritsland NA (2003) Synchrony in Svalbard reindeer population dynamics. Candian J Zool 81:103–110CrossRefGoogle Scholar
  2. Abrams PA, Matsuda H (1996) Positive indirect effects between prey species that share predators. Ecology 77:610–616CrossRefGoogle Scholar
  3. Abrams PA, Holt RD, Roth RD (1998) Apparent competition or apparent mutualism? Shared predation when populations cycle. Ecology 79:201–212CrossRefGoogle Scholar
  4. Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manag 66:912–918CrossRefGoogle Scholar
  5. Anderson HB, Madsen J, Fuglei E, Jensen GH, Woodin SJ, van der Wal R (2015) The dilemma of where to nest: influence of spring snow cover, food proximity and predator abundance on reproductive success of an Arctic-breeding migratory herbivore is dependent on nesting habitat choice. Polar Biol 38:153–162CrossRefGoogle Scholar
  6. Angelstam P (1986) Predation on ground-nesting birds nests in relation to predator densities and habitat edge. Oikos 47:365–373CrossRefGoogle Scholar
  7. Barraquand F, New LF, Redpath S, Matthiopoulos J (2015) Indirect effect of primary prey population dynamics on alternative prey. Theor Popul Biol 103:44–59CrossRefPubMedGoogle Scholar
  8. Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Software 67Google Scholar
  9. Bety J, Gauthier G, Giroux JF, Korpimaki E (2001) Are goose nesting success and lemming cycles linked? Interplay between nest density and predators. Oikos 93:388–400CrossRefGoogle Scholar
  10. Bowen DE, Robel RJ, Watt PG (1976) Habitat and investigators influence artificial ground nest losses. Trans Kans Acad Sci 79:141–147CrossRefGoogle Scholar
  11. Cornell H (1976) Search strategies and adaptive significance of switching in some general predators. Am Naturalist 110:317–320CrossRefGoogle Scholar
  12. Eide NE, Jepsen JU, Prestrud P (2004) Spatial organization of reproductive Arctic foxes Alopex lagopus: responses to changes in spatial and temporal availability of prey. J Anim Ecol 73:1056–1068CrossRefGoogle Scholar
  13. Eide NE, Eid PM, Prestrud P, Swenson JE (2005) Dietary responses of Arctic foxes Alopex lagopus to changing prey availability across an Arctic landscape. Wildl Biol 11:109–121CrossRefGoogle Scholar
  14. Eide NE, Stien A, Prestrud P, Yoccoz NG, Fuglei E (2012) Reproductive responses to spatial and temporal prey availability in a coastal Arctic fox population. J Anim Ecol 81:640–648CrossRefPubMedGoogle Scholar
  15. Elvebakk A (1999) Bioclimatic delimitation and subdivision of the Arctic. In: Nordal I, Razzhivin VY (eds) The species concept in the high north – A panarctic flora initiative. Norske Videnskaps-Akademi, Oslo, pp 81–112Google Scholar
  16. Elvebakk A (2005) A vegetation map of Svalbard on the scale 1: 3.5 mill. Phytocoenologia 35:951–967CrossRefGoogle Scholar
  17. Fox TAD, Eide NE, Bergersen E, Madsen J (2009) Resource partitioning in sympatric Arctic-breeding geese: summer habitat use, spatial and dietary overlap of Barnacle and Pink-footed Geese in Svalbard. Ibis 151:122–133CrossRefGoogle Scholar
  18. Frafjord K (1993) Food habits of Arctic foxes (Alopex lagopus) on the Western coast of Svalbard. Arctic 46:49–54CrossRefGoogle Scholar
  19. Fuglei E, Oritsland NA, Prestrud P (2003) Local variation in Arctic fox abundance on Svalbard. Norway Polar Biol 26:93–98Google Scholar
  20. Gauthier G, Bêty J, Giroux JF, Rochefort L (2004) Trophic interactions in a high-Arctic snow goose colony. Integrative Comparat Biol 44:119–129CrossRefGoogle Scholar
  21. Giroux MA, Berteaux D, Lecomte N, Gauthier G, Szor G, Bety J (2012) Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an Arctic predator. J Anim Ecol 81:533–542CrossRefPubMedGoogle Scholar
  22. Henriksen S, Hilmo O (2015) Norsk rødliste for arter 2015. Artsdatabanken, Trondheim (in Norwegian)Google Scholar
  23. Henttonen H, Fuglei E, Gower CN, Haukisalmi V, Ims RA, Niemimaa J, Yoccoz NG (2001) Echinococcus multilocularis on Svalbard: introduction of an intermediate host has enabled the local life-cycle. Parasitology 123:547–552CrossRefPubMedGoogle Scholar
  24. Holt RD, Kotler BP (1987) Short-term apparent competition. Am Naturalist 130:412–430CrossRefGoogle Scholar
  25. Hoset KS, Espmark Y, Moksnes A, Haugan T, Ingebrigtsen M, Lier M (2004) Effect of ambient temperature on food provisioning and reproductive success in Snow buntings Plectrophenax nivalis in the high -Arctic. Ardea 92:239–246Google Scholar
  26. Iles DT, Rockwell RF, Matulonis P, Robertson GJ, Abraham KF, Davies JC, Koons DN (2013) Predators, alternative prey and climate influence annual breeding success of a long-lived sea duck. J Anim Ecol 82:683–693CrossRefPubMedGoogle Scholar
  27. Ims RA (1990) On the adaptive value of reproductive synchrony as a predator-swamping strategy. Am Naturalist 136:485–498CrossRefGoogle Scholar
  28. Ims RA, Jepsen JU, Stien A, Yoccoz NG (2013) Science Plan for COAT: Climate-ecological Observatory for Arctic Tundra. Fram Centre, TromsøGoogle Scholar
  29. Ims RA, Alsos IG, Fuglei E, Pedersen ÅØ, Yoccoz NG (2014) An assessment of MOSJ - The state of the terrestrial environment in Svalbard. Report 144, Norwegian Polar Institute, TromsøGoogle Scholar
  30. Jepsen JU, Eide NE, Prestrud P, Jacobsen LB (2002) The importance of prey distribution in habitat use by Arctic foxes (Alopex lagopus). Can J Zool 80:418–429CrossRefGoogle Scholar
  31. Johansen BE, Karlsen SR, Tommervik H (2012) Vegetation mapping of Svalbard utilising Landsat TM/ETM plus data. Polar Rec 48:47–63CrossRefGoogle Scholar
  32. Johnston V, Syroechkovskiy E, Crockford N, Lanctot RB, Millington S, Clay R, Donaldson G, Ekker M, Gilchrist G, Black A, Crawford R (2015) Arctic Migratory Birds Initiative (AMBI): Workplan 2015-2019. CAFF Strategies Series No. 6. Conservation of Arctic Flora and Fauna, AkureyriGoogle Scholar
  33. Kovacs KM, Lydersen C (2006) Birds and mammals of Svalbard. Norwegian Polar Institute, TromsøGoogle Scholar
  34. Legagneux P et al (2012) Disentangling trophic relationships in a high-Arctic tundra ecosystem through food web modeling. Ecology 93:1707–1716CrossRefPubMedGoogle Scholar
  35. Legagneux P et al (2014) Arctic ecosystem structure and functioning shaped by climate and herbivore body size. Nature Climate Change 4:379–383CrossRefGoogle Scholar
  36. Lewis KP (2004) How important is the statistical approach for analyzing categorical data? a critique using artificial nests. Oikos 104:305–315CrossRefGoogle Scholar
  37. Madsen J et al (2007) Effects of snow cover on the timing and success of reproduction in high-Arctic pink-footed geese Anser brachyrhynchus. Polar Biol 30:1363–1372CrossRefGoogle Scholar
  38. Madsen J et al (2016) Svalbard pink-footed goose population status report 2015-2016. Technical report from Danish Centre for Environment and Energy, no. 83. Aarhus University and Danish Centre for Environment and Energy, AarhusGoogle Scholar
  39. Manzer DL, Hannon SJ (2005) Relating grouse nest success and corvid density to habitat: a multi-scale approach. J Wildl Management 69:110–123CrossRefGoogle Scholar
  40. McKinnon L, Bêty J (2009) Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J Field Ornithol 80(3):280–288CrossRefGoogle Scholar
  41. McKinnon L et al (2010) Lower predation risk for migratory birds at high latitudes. Science 327:326–327CrossRefPubMedGoogle Scholar
  42. McKinnon L, Berteaux D, Gauthier G, Bety J (2013) Predator-mediated interactions between preferred, alternative and incidental prey in the Arctic tundra. Oikos 122:1042–1048CrossRefGoogle Scholar
  43. McKinnon L, Berteaux D, Bêty J (2014) Predator-mediated interactions between lemmings and shorebirds: a test of the alternative prey hypothesis. Auk 131(4):619–628CrossRefGoogle Scholar
  44. Mehlum F, Black J, Madsen Je (1998) Research on Arctic geese: proceedings of the Svalbard goose symposium, Oslo, Norway, 23–26 September 1997. Report 200, Norwegian Polar Institute, TromsøGoogle Scholar
  45. Mitchell C et al (2010) Trends in goose numbers wintering in Britain & Ireland, 1995 to 2008. Ornis Svecica 20:128–143Google Scholar
  46. Moore RP, Robinson WD (2004) Artificial bird nests, external validity, and bias in ecological field studies. Ecology 85:1562–1567CrossRefGoogle Scholar
  47. Pedersen ÅØ, Bårdsen BJ, Veiberg V, Hansen BB (2014) Jegernes egne data analyser av jaktstatistikk og kjevemateriale fra svalbardrein. Norsk Polarinstitutt, Tromsø (in Norwegian)Google Scholar
  48. Prestrud P (1992) Food-habits and observations of the hunting behavior of Arctic foxes, Alopex-Lagopus, in Svalbard. Canadian Field Naturalist 106:225–236Google Scholar
  49. Robertson GJ (1995) Factors affecting nest site selection and nesting success in the common eider Somateria mollissima. Ibis 137:109–115CrossRefGoogle Scholar
  50. Roth JD (2003) Variability in marine resources affects Arctic fox population dynamics. J Anim Ecol 72:668–676CrossRefGoogle Scholar
  51. Soininen E, Fuglei E, Pedersen ÅØ (2016) Complementary use of density estimates and hunting statistics: different sides of the same story? Eur J Wildl Res 62(2):151–160CrossRefGoogle Scholar
  52. Steen JB, Unander S (1985) Breeding biology of the Svalbard Rock Ptarmigan Lagopus mutus hyperboreus. Ornis Scand 16:191–197CrossRefGoogle Scholar
  53. Storch I (1991) Habitat fragmentation, nest site selection, and nest predation risk in capercaillie. Ornis Scand 22:213–217CrossRefGoogle Scholar
  54. Summers RW, Nicoll M (2004) Geographical variation in the breeding biology of the Purple Sandpiper Calidris maritima. Ibis 146:303–313CrossRefGoogle Scholar
  55. Tombre IM, Black JM, Loonen MJJE (1998) Critical components in the dynamics of a barnacle goose colony: a sensitivity analysis. Norwegian Polar Institute, TromsøGoogle Scholar
  56. Villard MA, Part T (2004) Don’t put all your eggs in real nests: a sequel to Faaborg. Conserv Biol 18:371–372CrossRefGoogle Scholar
  57. Wisz M et al (2008) Modelling pink-footed goose (Anser brachyrhynchus) wintering distributions for the year 2050: potential effects of land-use change in Europe. Divers and Distrib 14:721–773CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Åshild Ø. Pedersen
    • 1
    Email author
  • Jennifer Stien
    • 4
  • Pernille B. Eidesen
    • 2
  • Rolf A. Ims
    • 3
  • Jane U. Jepsen
    • 4
  • Audun Stien
    • 4
  • Ingunn Tombre
    • 4
  • Eva Fuglei
    • 1
  1. 1.Fram CentreNorwegian Polar Institute (NPI)TromsøNorway
  2. 2.The University Centre in Svalbard (UNIS)LongyearbyenNorway
  3. 3.Department of Arctic and Marine BiologyUiT Arctic University of NorwayTromsøNorway
  4. 4.Arctic Ecology DepartmentNorwegian Institute for Nature Research (NINA), Fram CentreTromsøNorway

Personalised recommendations