Polar Biology

, Volume 41, Issue 3, pp 417–421 | Cite as

Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica

  • Ceridwen I. FraserEmail author
  • Laurie Connell
  • Charles K. Lee
  • S. Craig Cary
Short Note


Geothermal areas, such as volcanoes, might have acted as glacial microrefugia for a wide range of species. The heavily glaciated but volcanically active Antarctic continent presents an ideal system for assessing this hypothesis. Ice-free terrain around volcanoes in Antarctica is, however, often restricted to small patches, whereas subglacial cave systems, formed by vented volcanic steam, can be extensive and interconnected. No observations of macrobiota have yet been made for subglacial geothermal environments in Antarctica, but these organisms are often patchily distributed and can be difficult to find. We carried out metabarcoding (eDNA) analyses of soil samples taken from exposed areas on three volcanoes in Victoria Land, and subglacial caves on Mount Erebus. We found evidence of numerous eukaryotic groups, including mosses, algae, arthropods, oligochaetes and nematodes, at both exposed and subglacial sites. Our findings support the notion that geothermal areas—including subglacial environments—can nurture biodiversity in glaciated regions.


Volcano Polar Environmental DNA eDNA Refugia Subglacial 



Thanks to Jeroen Nederlof, Roanna Richards-Babbage, Leslie Astbury and Georgia Wakerley for laboratory assistance and advice, and Antarctica New Zealand for logistical support. CIF was funded by an ARC DECRA (DE140101715). CKL and SCC were supported by the New Zealand Marsden Fund (UOW0802 & UOW1003), the National Science Foundation (ANT 0739648) and the New Zealand Ministry of Business, Innovation, and Employment (UOWX1401).

Supplementary material

300_2017_2198_MOESM1_ESM.pdf (548 kb)
Supplementary material 1 (PDF 547 kb)
300_2017_2198_MOESM2_ESM.xlsx (62 kb)
Supplementary material 2 (XLSX 61 kb)


  1. Anderson JB, Shipp SS, Lowe AL, Wellner JS, Mosola AB (2002) The Antarctic ice sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quaternary Sci Rev 21:49–70. doi: 10.1016/S0277-3791(01)00083-X CrossRefGoogle Scholar
  2. Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA (2015) The changing form of Antarctic biodiversity. Nature 522:431–438. doi: 10.1038/nature14505 CrossRefPubMedGoogle Scholar
  3. Christner BC, Priscu JC, Achberger AM, Barbante C, Carter SP, Christianson K, Michaud AB, Mikucki JA, Mitchell AC, Skidmore ML, Vick-Majors TJ, the WST (2014) A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512:310–313. doi: 10.1038/nature13667 CrossRefPubMedGoogle Scholar
  4. Connell L, Staudigel H (2013) Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2:798–809. doi: 10.3390/biology2020798 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Convey P, Lewis Smith RI (2006) Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic. J Veg Sci 17:529–538. doi: 10.1111/j.1654-1103.2006.tb02474.x CrossRefGoogle Scholar
  6. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878. doi: 10.1126/science.1147261 CrossRefPubMedGoogle Scholar
  7. Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117. doi: 10.1111/j.1469-185X.2008.00034.x CrossRefPubMedGoogle Scholar
  8. Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture. Soil Biol Biochem 38:3107–3119. doi: 10.1016/j.soilbio.2006.01.014 CrossRefGoogle Scholar
  9. Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471. doi: 10.1016/j.tree.2012.04.011 CrossRefPubMedGoogle Scholar
  10. Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive glacial cycles. Proc Natl Acad Sci USA 111:5634–5639. doi: 10.1073/pnas.1321437111 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Giggenbach WF (1976) Geothermal ice caves on Mt Erebus, Ross Island, Antarctica. New Zeal J Geol Geop 19:365–372. doi: 10.1080/00288306.1976.10423566 CrossRefGoogle Scholar
  12. Herbold CW, McDonald IR, Cary SC (2014) Microbial ecology of geothermal habitats in Antarctica. In: Cowan DA (ed) Antarctic terrestrial microbiology. Springer, Berlin, pp 181–215CrossRefGoogle Scholar
  13. Kornobis E, Pálsson S, Kristjánsson BK, Svavarsson J (2010) Molecular evidence of the survival of subterranean amphipods (Arthropoda) during Ice Age underneath glaciers in Iceland. Mol Ecol 19:2516–2530. doi: 10.1111/j.1365-294X.2010.04663.x PubMedGoogle Scholar
  14. Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972. doi: 10.1128/AEM.70.10.5963-5972.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lough AC, Wiens DA, Grace Barcheck C, Anandakrishnan S, Aster RC, Blankenship DD, Huerta AD, Nyblade A, Young DA, Wilson TJ (2013) Seismic detection of an active subglacial magmatic complex in Marie Byrd Land, Antarctica. Nat Geosci 6:1031–1035. doi: 10.1038/ngeo1992 CrossRefGoogle Scholar
  16. Lyon GL, Giggenbach WF (1974) Geothermal activity in Victoria Land, Antarctica. New Zeal J Geol Geophy 17:511–521. doi: 10.1080/00288306.1973.10421578 CrossRefGoogle Scholar
  17. Rogers S, Shtarkman Y, Koçer Z, Edgar R, Veerapaneni R, Elia T (2013) Ecology of subglacial Lake Vostok (Antarctica), based on metagenomic/metatranscriptomic analyses of accretion ice. Biology 2:629. doi: 10.3390/biology2020629 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Shtarkman YM, Koçer ZA, Edgar R, Veerapaneni RS, D’Elia T, Morris PF, Rogers SO (2013) Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting Bacteria and Eukarya. PLoS ONE 8:e67221. doi: 10.1371/journal.pone.0067221 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Skotnicki ML, Selkirk PM, Broady P, Adam KD, Ninham JA (2001) Dispersal of the moss Campylopus pyriformis on geothermal ground near the summits of Mount Erebus and Mount Melbourne, Victoria Land, Antarctica. Antarct Sci 13:280–285. doi: 10.1017/S0954102001000396 CrossRefGoogle Scholar
  20. Stewart SF, Pinkerton H, Blackburn GA, Gudmundsson MT (2008) Monitoring active subglacial volcanoes: a case study using airborne remotely sensed imagery of Grímsvötn, Iceland. Int J Remote Sens 29:6501–6514. doi: 10.1080/01431160802168186 CrossRefGoogle Scholar
  21. Tebo BM, Davis RE, Anitori RP, Connell LB, Schiffman P, Staudigel H (2015) Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 6:179. doi: 10.3389/fmicb.2015.00179 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Zimbelman DR, Rye RO, Landis GP (2000) Fumaroles in ice caves on the summit of Mount Rainier—preliminary stable isotope, gas, and geochemical studies. J Volcan Geotherm Res 97:457–473. doi: 10.1016/S0377-0273(99)00180-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Fenner School of Environment and SocietyAustralian National UniversityActonAustralia
  2. 2.Department of Molecular and Biomedical SciencesUniversity of MaineOronoUSA
  3. 3.International Centre for Terrestrial Antarctic Research, University of WaikatoHamiltonNew Zealand

Personalised recommendations