Polar Biology

, Volume 41, Issue 2, pp 377–396 | Cite as

Succession of Antarctic benthic algae (Potter Cove, South Shetland Islands): structural patterns and glacial impact over a four-year period

  • Gabriela L. CampanaEmail author
  • Katharina Zacher
  • Dolores Deregibus
  • Fernando Roberto Momo
  • Christian Wiencke
  • María Liliana Quartino
Original Paper


There is a general lack of information on the succession of marine benthic algae in Antarctica. We performed two colonization experiments in the upper subtidal (3 and 5 m depth) using artificial substrates in Potter Cove (South Shetland Islands): in the outer cove, an area mainly unaffected by sedimentation, and in the inner cove, in close proximity to a retreating glacier, with high sediment inflow particularly during the melting season. Seasonal and interannual changes in total, diatom and macroalgal cover, species composition, and ecological indexes were assessed over four years. Tiles were analysed in spring and summer in the laboratory and by year-round photographic monitoring. Irradiance (photosynthetically active radiation and ultraviolet radiation), salinity, and temperature were monitored on a monthly basis. Benthic algae dominated the assemblages, with macroalgae reaching ~70% cover after two years. There were site and temporal differences in the contribution of diatom mats (mainly pennate forms) and macroalgal cover. Diatom cover was higher at the glacier-influenced site, particularly at the early stages, and decreased significantly with time. Between years, macroalgal assemblages changed significantly in a site-specific manner. Assemblages mainly comprised annual and pseudoperennial species at both sites, with absence of adult large Desmarestiales. Although a year separated the establishment of the two experiments, there were convergence patterns in the changes of cover over time—that seemed to be controlled by competitive interactions—and in the patterns of species replacement. However, the inner cove site exhibited lower number of macroalgal taxa and a tendency to decreased diversity over time that could be related to higher level of stress and disturbance caused by glacial influence.


Colonization Macroalgae and microalgae Benthic communities Global climate warming Glacier retreat UV radiation 



We thank the support of Carlini Station and Dallmann Laboratory crews. Field assistance of O. González and A. Ulrich was invaluable, as was the work of summer and overwinter expedition scientists: L. Rigacci, G. Aguirre, A. Fernández Ajó, A. Morettini, M. Garcia, D. López, and J. M. Piscicelli. Special thanks to Carlini Station Argentine Army and German diving crews, S. Doyle, G. Mercuri, E. Ruiz Barlett, H. Sala, M. Sierra and O. Zambrano. Images in Fig. 2 were kindly provided by Marcelo Mammana (upper panel) and Argentine Army diving crew (lower panel). The authors also wish to thank the valuable comments of three anonymous reviewers, who have helped to improve this manuscript. This work was performed within the framework of the scientific collaboration between Instituto Antártico Argentino/Dirección Nacional del Antártico and the Alfred-Wegener- Institute Helmholtz Centre for Polar and Marine Research. It was supported by Grants from DNA-IAA (PICTA 7/2008–2011), ANPCyT-DNA (PICTO 0116/2012–2015) and by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the priority programme “Antarctic Research with comparative investigations in Arctic ice areas” by a grant Za735/1-1. The present manuscript also presents an outcome of the international Research Network IMCONet funded by the Marie Curie Action IRSES IMCONet (FP7 IRSES, Action No. 318718).

Supplementary material

300_2017_2197_MOESM1_ESM.pdf (218 kb)
Supplementary material 1 (PDF 217 kb)
300_2017_2197_MOESM2_ESM.pdf (124 kb)
Supplementary material 2 (PDF 124 kb)
300_2017_2197_MOESM3_ESM.pdf (166 kb)
Supplementary material 3 (PDF 165 kb)


  1. Ahn I-Y, Moon H-W, Jeon M, Kang S-H (2016) First record of massive blooming of benthic diatoms and their association with megabenthic filter feeders on the shallow seafloor of an Antarctic fjord: does glacier melting fuel the bloom? Ocean Sci J 51:273–279. doi: 10.1007/s12601-016-0023-y CrossRefGoogle Scholar
  2. Airoldi L (2003) The effects of sedimentation on rocky coast assemblages. Oceanogr Mar Biol 41:161–236Google Scholar
  3. Airoldi L, Cinelli F (1997) Effects of sedimentation on subtidal macroalgal assemblages: an experimental study from a mediterranean rocky shore. J Exp Mar Biol Ecol 215:269–288. doi: 10.1016/S0022-0981(96)02770-0 CrossRefGoogle Scholar
  4. Al-Handal AY, Wulff A (2008) Marine benthic diatoms from Potter Cove, King George Island, Antarctica. Bot Mar 51:51–68. doi: 10.1515/BOT.2008.007
  5. Amsler CD, McClintock JB, Baker BJ (1999) An Antarctic feeding triangle: defensive interactions between macroalgae, sea urchins, and sea anemones. Mar Ecol Prog Ser 183:105–114. doi: 10.3354/meps183105 CrossRefGoogle Scholar
  6. Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159. doi: 10.3354/meps294141 CrossRefGoogle Scholar
  7. Amsler CD, Iken K, McClintock JB, Baker BJ (2009) Defenses of polar macroalgae against herbivores and biofoulers. Bot Mar 52:535–545. doi: 10.1515/BOT.2009.070
  8. Amsler CD, McClintock JB, Baker BJ (2012) Palatability of living and dead detached Antarctic macroalgae to consumers. Antarct Sci 24:589–590. doi: 10.1017/S0954102012000624 CrossRefGoogle Scholar
  9. Balata D, Piazzi L, Bulleri F (2015) Sediment deposition dampens positive effects of substratum complexity on the diversity of macroalgal assemblages. J Exp Mar Biol Ecol 467:45–51. doi: 10.1016/j.jembe.2015.03.005 CrossRefGoogle Scholar
  10. Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. Philos Trans R Soc B 362:11–38. doi: 10.1098/rstb.2006.1951 CrossRefGoogle Scholar
  11. Barnes DKA, Rothery P, Clarke A (1996) Colonisation and development in encrusting communities from the Antarctic intertidal and sublittoral. J Exp Mar Biol Ecol 196:251–265. doi: 10.1016/0022-0981(95)00132-8 CrossRefGoogle Scholar
  12. Bartsch I, Paar M, Fredriksen S, Schwanitz M, Daniel C, Hop H, Wiencke C (2016) Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol 39:2021–2036. doi: 10.1007/s00300-015-1870-1 CrossRefGoogle Scholar
  13. Bertness MD, Trussell GC, Ewanchuk PJ, Silliman BR (2002) Do alternate stable community states exist in the Gulf of Maine rocky intertidal zone? Ecology 83:3434–3448. doi:10.1890/0012-9658(2002)083[3434:DASCSE]2.0.CO;2Google Scholar
  14. Bowden DA, Clarke A, Peck LS, Barnes DKA (2006) Antarctic sessile marine benthos: colonisation and growth on artificial substrata over three years. Mar Ecol Prog Ser 316:1–16. doi: 10.3354/meps316001 CrossRefGoogle Scholar
  15. Brown D, Fraser KPP, Barnes DKA, Peck LS (2004) Links between the structure of an Antarctic shallow-water community and ice-scour frequency. Oecologia 141:121–129. doi: 10.1007/s00442-004-1648-6 CrossRefPubMedGoogle Scholar
  16. Campana GL, Quartino ML, Al-Handal AY, Wulff A (2008) Impacts of UV radiation and grazing on the structure of a subtidal benthic diatom assemblage in Antarctica. In: Wiencke C, Ferreyra GA, Abele D, Marenssi S (eds) The Antarctic ecosystem of Potter Cove, King-George Island (Isla 25 de Mayo). Ber Polarforsch Meeresforsch 571:302–310Google Scholar
  17. Campana GL, Zacher K, Fricke A, Molis M, Wulff A, Quartino ML, Wiencke C (2009) Drivers of colonization and succession in polar benthic macro- and microalgal communities. Bot Mar 52:655–667. doi: 10.1515/BOT.2009.076
  18. Clark GF, Stark JS, Johnston EL, Runcie JW, Goldsworthy PM, Raymond B, Riddle MJ (2013) Light-driven tipping points in polar ecosystems. Glob Change Biol 19:3749–3761. doi: 10.1111/gcb.12337 CrossRefGoogle Scholar
  19. Clarke KR, Gorley RN (2001) PRIMER v5: User manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  20. Clarke KR, Warick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, PlymouthGoogle Scholar
  21. Clements FE (1916) Plant succession: an analysis of the development of vegetation. Publication no. 242. Carnegie Institution of Washington, WashingtonGoogle Scholar
  22. Coelho SM, Rijstenbil JW, Brown MT (2000) Impacts of anthropogenic stresses on the early development stages of seaweeds. J Aquat Ecosyst Stress Recovery 7:317–333. doi: 10.1023/A:1009916129009 CrossRefGoogle Scholar
  23. Cognetti G, Sarà M, Magazzù G (2001) Biología Marina. Ariel SA, BarcelonaGoogle Scholar
  24. Connell JH (1987) Change and persistence in some marine communities. In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. Blackwell Scientific Publications, Oxford, pp 339–352Google Scholar
  25. Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544. doi: 10.1126/science.1104235 CrossRefPubMedGoogle Scholar
  26. Corbisier TN, Petti MAV, Skowronski RSP, Brito TAS (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): delta C-13 stable-isotope analysis. Polar Biol 27:75–82. doi: 10.1007/s00300-003-0567-z
  27. Dayton PK (1989) Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 245:1484–1486. doi: 10.1126/science.245.4925.1484 CrossRefPubMedGoogle Scholar
  28. Deregibus D, Quartino ML, Campana GL, Momo FR, Wiencke C, Zacher K (2016) Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biol 39:153–166. doi: 10.1007/s00300-015-1679-y CrossRefGoogle Scholar
  29. Dierssen HM, Smith RC, Vernet M (2002) Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc Natl Acad Sci USA 99:1790–1795. doi: 10.1073/pnas.032206999 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dijkstra JA, Westerman EL, Harris LG (2011) The effects of climate change on species composition, succession and phenology: a case study. Glob Change Biol 17:2360–2369. doi: 10.1111/j.1365-2486.2010.02371.x CrossRefGoogle Scholar
  31. Ducklow HW, Fraser WR, Meredith MP, Stammerjohn SE, Doney SC, Martinson DG, Sailley SF, Schofield OM, Steinberg DK, Venables HJ, Amsler CD (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26:190–203. doi: 10.5670/oceanog.2013.62 CrossRefGoogle Scholar
  32. Eraso A, Domínguez MA (2007) Physicochemical characteristics of the subglacier discharge in Potter Cove, King George Island, Antarctica. In: Karst and Cryokarst: studies of the Faculty of Earth Sciences, vol. 45. University of Silesia, pp 111–122Google Scholar
  33. Foster MS, Sousa WP (1985) Succession. In: Littler MM, Littler DS (eds) Handbook of phycological methods—ecological field methods: macroalgae, vol. 4. Cambridge University Press, pp 269–290Google Scholar
  34. Foster MS, Harrold C, Hardin DD (1991) Point vs. photo quadrat estimates of the cover of sessile marine organisms. J Exp Mar Biol Ecol 146:193–203. doi: 10.1016/0022-0981(91)90025-R CrossRefGoogle Scholar
  35. Foster MS, Nigg EW, Kiguchi LM, Hardin DD, Pearse JS (2003) Temporal variation and succession in an algal-dominated high intertidal assemblage. J Exp Mar Biol Ecol 289:15–39. doi: 10.1016/S0022-0981(03)00035-2 CrossRefGoogle Scholar
  36. Fricke A, Molis M, Wiencke C, Valdivia N, Chapman AS (2008) Natural succession of macroalgal-dominated epibenthic assemblages at different water depths and after transplantation from deep to shallow water on Spitsbergen. Polar Biol 31:1191–1203. doi: 10.1007/s00300-008-0458-4 CrossRefGoogle Scholar
  37. Guiry MD, Guiry GM (2017) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway.
  38. Huang R, Boney AD (1985) Individual and combined interactions between littoral diatoms and sporelings of red algae. J Exp Mar Biol Ecol 85:101–111. doi: 10.1016/0022-0981(85)90136-4 CrossRefGoogle Scholar
  39. Huang YM, Amsler MO, McClintock JB, Amsler CD, Baker BJ (2007) Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 30:1417–1430. doi: 10.1007/s00300-007-0303-1 CrossRefGoogle Scholar
  40. Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and physiology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  41. Iken K, Barrera Oro ER, Quartino ML, Casaux RJ, Brey T (1997) Grazing by the Antarctic fish Notothenia coriiceps: evidence for selective feeding on macroalgae. Antarct Sci 9:386–391. doi: 10.1017/S0954102097000497 CrossRefGoogle Scholar
  42. Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215. doi: 10.1080/00071618900650221 CrossRefGoogle Scholar
  43. Kim D (2001) Seasonality of marine algae and grazers of an Antarctic rocky intertidal, with emphasis on the role of the limpet Nacella concinna Strebel (Gastropoda: Patellidae). Ber Polarforsch Meeresforsch 397, Alfred Wegener Institute for Polar and Marine Research, BremerhavenGoogle Scholar
  44. Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  45. Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269. doi: 10.1016/j.cageo.2005.11.009 CrossRefGoogle Scholar
  46. Lagger C, Nime M, Torre L, Servetto N, Tatián M, Sahade R (2017) Climate change, glacier retreat and a new ice-free island offer new insights on Antarctic benthic responses. Ecography 40:1–12. doi: 10.1111/ecog.03018 CrossRefGoogle Scholar
  47. Longhi ML, Schloss IR, Wiencke C (2003) Effect of irradiance and temperature on photosynthesis and growth of two Antarctic benthic diatoms, Gyrosigma subsalinum and Odontella litigiosa. Bot Mar 46:276–284. doi: 10.1515/BOT.2003.025
  48. Lüning K, tom Dieck I (1989) Environmental triggers in algal seasonality. Bot Mar 32:389–397. doi: 10.1515/botm.1989.32.5.389
  49. Magurran AE (2004) Measuring biological diversity. Blackwell Science LtdGoogle Scholar
  50. Majewska R, Convey P, De Stefano M (2016) Summer epiphytic diatoms from Terra Nova Bay and Cape Evans (Ross Sea, Antarctica)—a synthesis and final conclusions. PLoS ONE 11:e0153254. doi: 10.1371/journal.pone.0153254 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Meiners SJ, Cadotte MW, Fridley JD, Pickett STA, Walker LR (2015) Is successional research nearing its climax? New approaches for understanding dynamic communities. Funct Ecol 29:154–164. doi: 10.1111/1365-2435.12391 CrossRefGoogle Scholar
  52. Monien D, Monien P, Brünjes R, Widmer T, Kappenberg A, Silva Busso AA, Schnetger B, Brumsack H-J (2017) Meltwater as a source of potentially bioavailable iron to Antarctica waters. Antarct Sci. doi: 10.1017/S095410201600064X Google Scholar
  53. Noël LM-LJ, Griffin JN, Moschella PS, Jenkins SR, Thompson RC, Hawkins SJ (2009) Changes in diversity and ecosystem functioning during succession. In: Wahl M (ed) Marine hard bottom communities: patterns, dynamics, diversity and change, Ecological Studies, vol 206. Springer, pp 213–223Google Scholar
  54. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270. doi: 10.1126/science.164.3877.262 CrossRefPubMedGoogle Scholar
  55. Paar M, Voronkov A, Hop H, Brey T, Bartsch I, Schwanitz M, Wiencke C, Lebreton B, Asmus R, Asmus H (2015) Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol 39:2065–2076. doi: 10.1007/s00300-015-1760-6 CrossRefGoogle Scholar
  56. Pacheco AS, Laudien J, Thiel M, Oliva M, Heilmayer O (2011) Succession and seasonal onset of colonization in subtidal hard-bottom communities off northern Chile. Mar Ecol 32:75–87. doi: 10.1111/j.1439-0485.2010.00398.x CrossRefGoogle Scholar
  57. Pasotti F, Manini E, Giovannelli D, Wölfl A-C, Monien D, Verleyen E, Braeckman U, Abele D, Vanreusel A (2015) Antarctic shallow water benthos in an area of recent rapid glacier retreat. Mar Ecol 36:716–733. doi: 10.1111/maec.12179 CrossRefGoogle Scholar
  58. Prach K, Walker LR (2011) Four opportunities for studies of ecological succession. Trends Ecol Evol 26:119–123. doi: 10.1016/j.tree.2010.12.007 CrossRefPubMedGoogle Scholar
  59. Quartino ML, Zaixso HE, Boraso de Zaixso AL (2005) Biological and environmental characterization of marine macroalgal assemblages in Potter Cove, South Shetland Islands, Antarctica. Bot Mar 48:187–197. doi: 10.1515/BOT.2005.029
  60. Quartino ML, Deregibus D, Campana GL, Latorre GEJ, Momo FR (2013) Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS ONE 8:e58223. doi: 10.1371/journal.pone.0058223 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rautenberger R, Bischof K (2008) UV-susceptibility of photosynthesis of adult sporophytes of four brown Antarctic macroalgae (Phaeophyceae). In: Wiencke C, Ferreyra GA, Abele D, Marenssi S (eds) The Antarctic ecosystem of Potter Cove, King-George Island (Isla 25 de Mayo). Ber Polarforsch Meeresforsch 571:263–269Google Scholar
  62. Rautenberger R, Huovinen P, Gómez I (2015) Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae. Mar Biol 162:1087–1097. doi: 10.1007/s00227-015-2651-7 CrossRefGoogle Scholar
  63. Roleda M, Zacher K, Wulff A, Hanelt D, Wiencke C (2007) Photosynthetic performance, DNA damage and repair in gametes of the endemic Antarctic brown alga Ascoseira mirabilis exposed to ultraviolet radiation. Austral Ecol 32:917–926. doi: 10.1111/j.1442-9993.2007.01796.x CrossRefGoogle Scholar
  64. Roleda MY, Zacher K, Wulff A, Hanelt D, Wiencke C (2008) Susceptibility of spores of different ploidy levels from Antarctic Gigartina skottsbergii (Gigartinales, Rhodophyta) to ultraviolet radiation. Phycologia 47:361–370. doi: 10.2216/PH07-84.1 CrossRefGoogle Scholar
  65. Roleda MY, Campana GL, Wiencke C, Hanelt D, Quartino ML, Wulff A (2009) Sensitivity of Antarctic Urospora penicilliformis (Ulotrichales, Chlorophyta) to ultraviolet radiation is life-stage dependent. J Phycol 45:600–609. doi: 10.1111/j.1529-8817.2009.00691.x CrossRefPubMedGoogle Scholar
  66. Rückamp M, Braun M, Suckro S, Blindow N (2011) Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob Planet Change 79:99–109. doi: 10.1016/j.gloplacha.2011.06.009 CrossRefGoogle Scholar
  67. Sahade R, Lagger C, Torre L, Momo FR, Monien P, Schloss IR, Barnes DKA, Servetto N, Tarantelli S, Tatián M, Zamboni N, Abele D (2015) Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv 1:e1500050. doi: 10.1126/sciadv.1500050 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Schloss IR, Abele D, Moreau S, Demers S, Bers V, González O, Ferreyra GA (2012) Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). J Mar Syst 92:53–66. doi: 10.1016/j.jmarsys.2011.10.006 CrossRefGoogle Scholar
  69. Schoenrock KM, Schram JB, Amsler CD, McClintock JB, Angus RA (2015) Climate change impacts on overstory Desmarestia spp. from the western Antarctic Peninsula. Mar Biol 162:377–389. doi: 10.1007/s00227-014-2582-8 CrossRefGoogle Scholar
  70. Scrosati R, Heaven C (2007) Spatial trends in community richness, diversity, and evenness across rocky intertidal environmental stress gradients in eastern Canada. Mar Ecol Prog Ser 342:1–14. doi: 10.3354/meps342001 CrossRefGoogle Scholar
  71. Smale DA, Barnes DKA (2008) Likely responses of the Antarctic benthos to climate-related changes in physical disturbance during the 21st century, based primarily on evidence from the West Antarctic Peninsula region. Ecography 31:289–305. doi: 10.1111/j.0906-7590.2008.05456.x CrossRefGoogle Scholar
  72. Sousa WP (2001) Natural disturbance and the dynamics of marine benthic communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates Inc, Sunderland, pp 85–130Google Scholar
  73. Sousa WP, Connell JH (1992) Grazing and succession in marine algae. In: John DM, Hawkins SJ, Price JH (eds) Plant-animal interactions in the marine benthos, vol 46. Clarendon Press, Oxford, pp 425–441Google Scholar
  74. Stanwell-Smith D, Barnes DKA (1997) Benthic community development in Antarctica: recruitment and growth on settlement panels at Signy Island. J Exp Mar Biol Ecol 212:61–79. doi: 10.1016/S0022-0981(96)02754-2 CrossRefGoogle Scholar
  75. Tatián M, Sahade M, Esnal GB (2004) Diet components in the food of Antarctic ascidians living at low levels of primary production. Antarct Sci 16:123–128. doi: 10.1017/S0954102004001890 CrossRefGoogle Scholar
  76. Torre L, Abele D, Lagger C, Momo FR, Sahade R (2014) When shape matters: strategies of different Antarctic ascidians morphotypes to deal with sedimentation. Mar Environ Res 99:179–187. doi: 10.1016/j.marenvres.2014.05.014 CrossRefPubMedGoogle Scholar
  77. Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewski P, Summerhayes C (2009) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, CambridgeGoogle Scholar
  78. Uribe RA, Ortiz M, Macaya EC, Pacheco AS (2015) Successional patterns of hard-bottom macrobenthic communities at kelp bed (Lessonia trabeculata) and barren ground sublittoral systems. J Exp Mar Biol Ecol 472:180–188. doi: 10.1016/j.jembe.2015.08.002 CrossRefGoogle Scholar
  79. Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189CrossRefGoogle Scholar
  80. Wiencke C (1990) Seasonality of brown macroalgae from Antarctica—a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:589–600. doi: 10.1007/BF00239370 CrossRefGoogle Scholar
  81. Wiencke C, Clayton MN (2002) Antarctic seaweeds. In: Wägele JW (ed) Synopsis of the Antarctic benthos, vol 9. A.R.G. Ganter Verlag KG Ruggell, LichtensteinGoogle Scholar
  82. Wiencke C, tom Dieck I (1989) Temperature requirements for growth and temperature tolerance of macroalgae endemic to the Antarctic region. Mar Ecol Prog Ser 54:189–197CrossRefGoogle Scholar
  83. Wiencke C, Amsler CD, Clayton MN (2014) Macroalgae. In: De Broyer C, Koubbi P, Griffiths HJ, Ramond B, Udekem d’Acoz C, Van de Putte A, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 66–73Google Scholar
  84. Witman JD, Dayton PK (2001) Rocky subtidal communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates Inc, Sunderland, pp 339–366Google Scholar
  85. Wlodarska-Kowalczuk M, Pearson TH, Kendall MA (2005) Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fjord. Mar Ecol Prog Ser 31:31–41. doi: 10.3354/meps303031 CrossRefGoogle Scholar
  86. Zacher K (2014) The susceptibility of spores and propagules of Antarctic seaweeds to UV and photosynthetically active radiation—field versus laboratory experiments. J Exp Mar Biol Ecol 458:57–63. doi: 10.1016/j.jembe.2014.05.007 CrossRefGoogle Scholar
  87. Zacher K, Campana GL (2008) UV and grazing effects on an intertidal and subtidal algal assemblage: a comparative study. In: Wiencke C, Ferreyra GA, Abele D, Marenssi S (eds) The Antarctic ecosystem of Potter Cove, King-George Island (Isla 25 de Mayo). Ber Polarforsch Meeresforsch 571:287–294Google Scholar
  88. Zacher K, Hanelt D, Wiencke C, Wulff A (2007a) Grazing and UV radiation effects on an Antarctic intertidal microalgal assemblage: a long-term field study. Polar Biol 30:1203–1212. doi: 10.1007/s00300-007-0278-y CrossRefGoogle Scholar
  89. Zacher K, Roleda M, Hanelt D, Wiencke C (2007b) UV effects on photosynthesis and DNA in propagules of three Antarctic seaweeds (Adenocystis utricularis, Monostroma hariotii and Porphyra endiviifolium). Planta 225:1505–1516. doi: 10.1007/s00425-006-0436-4 CrossRefPubMedGoogle Scholar
  90. Zacher K, Wulff A, Molis M, Hanelt D, Wiencke C (2007c) Ultraviolet radiation and consumer effects on a field-grown intertidal macroalgal assemblage in Antarctica. Glob Change Biol 13:1201–1215. doi: 10.1111/j.1365-2486.2007.01349.x CrossRefGoogle Scholar
  91. Zacher K, Rautenberger R, Hanelt D, Wulff A, Wiencke C (2009) The abiotic environment of polar marine benthic algae. Bot Mar 52:483–490, doi: 10.1515/BOT.2009.082
  92. Zacher K, Bernard M, Bartsch I, Wiencke C (2016a) Survival of early life history stages of Arctic kelps (Kongsfjorden, Svalbard) under multifactorial global change scenarios. Polar Biol 39:2009–2020. doi: 10.1007/s00300-016-1906-1 CrossRefGoogle Scholar
  93. Zacher K, Savaglia V, Bartsch I (2016b) Effects of temperature and interspecific competition on growth and photosynthesis of two endemic Antarctic Desmarestia species. Algol Stud 151(152):103–122. doi: 10.1127/algol_stud/2016/0269 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Gabriela L. Campana
    • 1
    • 2
    Email author
  • Katharina Zacher
    • 3
  • Dolores Deregibus
    • 1
  • Fernando Roberto Momo
    • 2
    • 4
    • 5
  • Christian Wiencke
    • 3
  • María Liliana Quartino
    • 1
    • 6
  1. 1.Departamento de Biología CosteraInstituto Antártico Argentino, Dirección Nacional del AntárticoSan Martin, Buenos AiresArgentina
  2. 2.Departamento de Ciencias BásicasUniversidad Nacional de LujánLuján, Buenos AiresArgentina
  3. 3.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  4. 4.Instituto de CienciasUniversidad Nacional de General SarmientoLos PolvorinesArgentina
  5. 5.INEDESUniversidad Nacional de Luján - CONICETLujánArgentina
  6. 6.Museo Argentino de Ciencias Naturales B. RivadaviaBuenos AiresArgentina

Personalised recommendations