Advertisement

Polar Biology

, Volume 41, Issue 2, pp 269–281 | Cite as

Links between bacteria derived from penguin guts and deposited guano and the surrounding soil microbiota

  • Wen Chyin Yew
  • David Anthony Pearce
  • Michael James Dunn
  • Stacey Adlard
  • Siti Aisyah Alias
  • Azizan Abu Samah
  • Peter Convey
Original Paper

Abstract

Penguins are an important indicator of marine ecosystem health and a major contributor of nutrients to terrestrial ecosystems in Antarctica. Their stomach microbiota is influenced by both the prey consumed and their foraging environment in the sea. As penguins feed at sea and breed on land, they might be expected to transfer microbes (e.g. prey-associated and marine bacteria) as well as nutrients from their stomachs while regurgitating food or in their guano to the surrounding terrestrial environment. However, most research attention to date has focused separately on the penguin gut microbiota (via cloacal/guano samples) and the terrestrial soil microbiota, and any relationship between them has yet to be established. Here, we analysed the bacterial communities in stomach regurgitates and cloacal swabs from the same individual birds, freshly deposited guano and rookery soils of two Pygoscelis penguins that breed sympatrically on Signy Island (South Orkney Islands, maritime Antarctic) using a high-throughput DNA sequencing method. Our data do not support the hypothesis that bacteria transferred from penguin guts and/or deposited guano make a significant contribution to the communities of the surrounding terrestrial microbial ecosystem. In both penguin species, composition of bacterial communities differed between the four sample types, with Jaccard similarities ranging between 10 and 36%. Assemblages of the dominant and co-occurring bacterial communities in rookery soils were either significantly negatively correlated or not correlated with the three other sample types. Sample-specific communities were also identified in this study, contributing around 63% of the identified diversity overall.

Keywords

Antarctic Bacterial input Microbial diversity Terrestrial environment 

Notes

Acknowledgements

This study was funded by the Sultan Mizan Antarctic Research Foundation (YPASM) and University of Malaya Research Grant (UMRG: RP007-2012A). Laboratory resources were provided by British Antarctic Survey (BAS) and Northumbria University. We thank University of Malaya for supporting Visiting Professors David A. Pearce (under Visiting Professor Scheme) and Peter Convey (under Academic Icon Programme) to the National Antarctic Research Centre. Wen Chyin Yew is a recipient of MyBrain scholarship (MyPhD) funded by the Ministry of Higher Education Malaysia. Peter Convey and Michael J Dunn are supported by NERC core funding to the BAS “Biodiversity, Evolution and Adaptation” and “Ecosystems” teams, respectively. This paper also contributes to the Scientific Committee on Antarctic Research “State of the Antarctic Ecosystem” research programme (AntEco).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures involving animals followed internationally recognised CCAMLR CEMP standard methods and were in accordance with the ethical standards of the British Antarctic Survey.

Supplementary material

300_2017_2189_MOESM1_ESM.xlsx (87 kb)
Supplementary material 1 (XLSX 86 kb)
300_2017_2189_MOESM2_ESM.xlsx (79 kb)
Supplementary material 2 (XLSX 79 kb)
300_2017_2189_MOESM3_ESM.xlsx (29 kb)
Supplementary material 3 (XLSX 28 kb)
300_2017_2189_MOESM4_ESM.xlsx (27 kb)
Supplementary material 4 (XLSX 26 kb)

References

  1. Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S (2009) Bacterial diversity associated with ornithogenic soil of the Ross Sea region Antarctica. Can J Microbiol 55:21–36CrossRefPubMedGoogle Scholar
  2. Aldape MJ, Bryant AE, Stevens DL (2006) Clostridium sordellii infection: epidemiology clinical findings and current perspectives on diagnosis and treatment. Clin Infect Dis 43:1436–1446CrossRefPubMedGoogle Scholar
  3. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836. doi: 10.1371/journal.pone.0002836 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andreína Pacheco M, Lentino M, Mata C, Barreto S, Araque M (2008) Microflora in the crop of adult dusky-billed parrotlets (Forpus Modestus). J Ornithol 149:621–628CrossRefGoogle Scholar
  5. Ball BA, Tellez CR, Virginia RA (2015) Penguin activity influences soil biogeochemistry and soil respiration in rookeries on Ross Island Antarctica. Polar Biol 38:1357–1368CrossRefGoogle Scholar
  6. Banks JC, Craig S, Cary I, Hogg D (2009) The phylogeography of Adélie Penguin faecal flora. Environ Microbiol 11:577–588CrossRefPubMedGoogle Scholar
  7. Barbosa A, Palacios MJ (2009) Health of Antarctic birds: a review of their parasites pathogens and diseases. Polar Biol 32:1095–1115CrossRefGoogle Scholar
  8. Barbosa A, Balagué V, Valera F, Martínez A, Benzal J, Motas M, Diaz JI, Mira A, Pedrós-Alió C (2016) Age-related differences in the gastrointestinal microbiota of Chinstrap Penguins (Pygoscelis antarctica). PLoS ONE 11:e0153215. doi: 10.1371/journal.pone.0153215 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boersma PD, Rebstock GA (2014) Climate change increases reproductive failure in Magellanic Penguins. PLoS ONE 9:e85602. doi: 10.1371/journal.pone.0085602 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boersma PD, Rebstock GA, Frere E, Moore SE (2009) Following the fish: penguins and productivity in the South Atlantic. Ecol Monogr 79:59–76CrossRefGoogle Scholar
  11. Bokhorst S, Convey P (2016) Impact of marine vertebrates on Antarctic terrestrial microarthropods. Antarct Sci 28:175–186CrossRefGoogle Scholar
  12. Bokhorst S, Huiskes A, Convey P, Aerts R (2007) External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the Maritime Antarctic. Polar Biol 30:1315–1321CrossRefGoogle Scholar
  13. Bottos EM, Scarrow JW, Archer SDJ, McDonald IR, Cary SC (2014) Bacterial community structures of Antarctic soils. In: Cowan D (ed) Antarctic terrestrial microbiology. Springer, Berlin, pp 9–33CrossRefGoogle Scholar
  14. Bowman JP, Nichols DS, McMeekin TA (1997) Psychrobacter glacincola sp. nov a halotolerant psychrophilic bacterium isolated from Antarctic sea ice. Syst Appl Microbiol 20:209–215CrossRefGoogle Scholar
  15. Brandl HB, van Dongen WFD, Darolová A, Krištofík J, Majtan J, Hoi H (2014) Composition of bacterial assemblages in different components of reed warbler nests and a possible role of egg incubation in pathogen regulation. PLoS ONE 12:e114861. doi: 10.1371/journal.pone.0114861 CrossRefGoogle Scholar
  16. Brooke MD (2004) The food consumption of the world’s seabirds. Proc R Soc B 271:246–248CrossRefGoogle Scholar
  17. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PA, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad Sci 108:1–7CrossRefGoogle Scholar
  18. Cavicchioli R (2015) Microbial ecology of Antarctic aquatic systems. Nat Rev Microbiol 13:691–706CrossRefPubMedGoogle Scholar
  19. CCAMLR (2003) CEMP standard methods. CCAMLR, HobartGoogle Scholar
  20. Chong CW, Dunn MJ, Convey P, Tan GYA, Wong RCS, Tan IKP (2009) Environment influences on bacterial diversity of soils on Signy Island maritime Antarctic. Polar Biol 32:1571–1582CrossRefGoogle Scholar
  21. Cormack WPM, Fraile ER (1990) Bacterial flora of newly caught Antarctic fish Notothenia neglecta. Polar Biol 10:413–417. doi: 10.1007/BF00233688 CrossRefGoogle Scholar
  22. Craven SE, Stern NJ, Bailey JS, Cox NA (2001) Incidence of Clostridium perfringens in broiler chickens and their environment during production and processing. Avian Dis 45:887–896CrossRefPubMedGoogle Scholar
  23. Davey MC, Pickup J, Block W (1992) Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct Sci 4:383–388CrossRefGoogle Scholar
  24. Dewar ML, Arnould JPY, Dann P, Trathan P, Groscolas R, Smith S (2013) Interspecific variations in the gastrointestinal microbiota in penguins. Microbiol Open 2:195–204CrossRefGoogle Scholar
  25. Dewar ML, Arnould JP, Krause L, Trathan P, Dann P, Smith SC (2014) Influence of fasting during moult on the faecal microbiota of penguins. PLoSONE 9:e99996. doi: 10.1371/journal.pone.0099996 CrossRefGoogle Scholar
  26. Dickinson I, Goodall-Copestake W, Thorne MAS, Schlitt T, Ávila-Jiménez ML, Pearce DA (2016) Extremophiles in an Antarctic marine ecosystem. Microorganisms 4:8. doi: 10.3390/microorganisms4010008 CrossRefPubMedCentralGoogle Scholar
  27. Durbán A, Abellán JJ, Jiménez-Hernández N, Ponce M, Ponce J, Sala T, D’Auria G, Latorre A, Moya A (2011) Assessing gut microbial diversity from feces and rectal mucosa. Microbial Ecol 61:123–133CrossRefGoogle Scholar
  28. Elfaki MG, Abas B, Mahmoud OM, Kleven SH (2002) Isolation and characterization of Mycoplasma arginini from camels (Camelus dromedaries) pneumonia. Comp Immunol Microb 25:49–57CrossRefGoogle Scholar
  29. Faedo M, Larsen M, Dimander SO, Yeates GW, Höglund J, Waller PJ (2002) Growth of the fungus Duddingtonia flagrans in soil surrounding feces deposited by cattle or sheep fed the fungus to control nematode parasites. Biol Control 23:64–70CrossRefGoogle Scholar
  30. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI (2013) The long-term stability of the human gut microbiota. Science 341:1237439CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fall S, Hamelin J, Ndiaye F, Assigbetse K, Aragno M, Chotte JL, Brauman A (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokolo ensis) and its mounds. Appl Environ Microbiol 73:5199–5208CrossRefPubMedPubMedCentralGoogle Scholar
  32. Forcada J, Trathan PN (2009) Penguin responses to climate change in the Southern Ocean. Glob Change Biol 15:1618–1630CrossRefGoogle Scholar
  33. Fowler J, Cohen L, Jarvis P (1998) Practical statistics for field biology. John Wiley and Sons, ChichesterGoogle Scholar
  34. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264CrossRefGoogle Scholar
  35. Goodenough AE, Stallwood B, Dandy S, Nicholson TE, Stubbs H, Coker DG (2017) Like mother like nest: similarity in microbial communities of adult female Pied Flycatchers and their nests. J Ornithol 158:233–244CrossRefGoogle Scholar
  36. Heine JC, Speir TW (1989) Ornithogenic soils of the cape bird Adélie Penguin rookeries Antarctica. Polar Biol 10:89–99CrossRefGoogle Scholar
  37. Hird SM, Carstens BC, Cardiff SW, Dittmann DL, Brumfield RT (2014) Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater). PeerJ 2:e321. doi: 10.7717/peerj.321 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hirsch PR, Mauchline TH, Clark IM (2010) Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42:878–887CrossRefGoogle Scholar
  39. Hofstee E, Balks M, Petchey F, Campbell D (2006) Soils of Seabee Hook, Cape Hallett, Northern Victoria Land, Antarctica. Antarct Sci 18:473–486. doi: 10.1017/S0954102006000526 CrossRefGoogle Scholar
  40. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses perils and pitfalls. J Clin Microbiol 45:2761–2764CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jiang SC, Chu W, Olson BH, He JW, Choi S, Zhang J, Le JY, Gedalanga PB (2007) Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Appl Microbiol Biot 76:927–934CrossRefGoogle Scholar
  42. Kelly MD, Lukaschewsky S, Anderson CG (1978) Bacterial flora of Antarctic krill (Euphasia superba) and some of their enzymatic properties. J Food Sci 43:1196–1197CrossRefGoogle Scholar
  43. Kim OS, Chae N, Lim HS, Cho A, Kim JH, Hong SG, Oh J (2012) Bacterial diversity in ornithogenic soils compared to mineral soils on King George Island Antarctica. J Microbiol 50:1081–1085CrossRefPubMedGoogle Scholar
  44. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Østerås M, Schrenzel J, François P (2009) Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Meth 79:266–271CrossRefGoogle Scholar
  46. Lucas FS, Heeb P (2005) Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P caeruleus nestlings. J Avian Biol 36:510–516CrossRefGoogle Scholar
  47. Lynch MD, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229CrossRefPubMedGoogle Scholar
  48. Lynnes AS, Reid EK, Croxall JP (2004) Diet and reproductive success of Adélie and Chinstrap Penguins: linking response of predators to prey population dynamics. Polar Biol 27:544–554CrossRefGoogle Scholar
  49. Ma D, Zhu R, Ding W, Shen C, Chu H, Lin X (2013) Ex-situ enzyme activity and bacterial community diversity through soil depth profiles in penguin and seal colonies on Vestfold Hills East Antarctica. Polar Biol 36:1347–1361CrossRefGoogle Scholar
  50. Makonde HM, Mwirichia R, Osiemo Z, Boga HI, Klenk HN (2015) 454 Pyrosequencing based assessment of bacterial diversity and community structure in termite guts mounds and surrounding soils. Springer Plus 4:471. doi: 10.1186/s40064-015-1262-6 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean sea ice and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271CrossRefGoogle Scholar
  52. Manjula A, Pushpanathan M, Sathyavathi S, Gunasekaran P, Rajendhran J (2016) Comparative analysis of microbial diversity in termite gut and termite nest using Ion sequencing. Curr Microbiol 72:267–275PubMedGoogle Scholar
  53. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The MG-RAST server: a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386. doi: 10.1186/1471-2105-9-386 CrossRefGoogle Scholar
  54. Nakayama J, Jiang J, Watanabe K, Chen K, Ninxin H, Matsuda K, Kurakawa T, Tsuji H, Sonomoto K, Lee YK (2013) Up to species-level community analysis of human gut microbiota by 16S rRNA amplicon pyrosequencing. Biosci Microb Food Health 32:69–76CrossRefGoogle Scholar
  55. Otani S, Hansen LH, Sørensen SJ, Poulsen M (2016) Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment. Microbial Ecol 71:207–220CrossRefGoogle Scholar
  56. Purdy KJ, Nedwell DB, Embley TM (2003) Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microbiol 69:3181–3191CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rampelotto PH, Barboza ADM, Pereira AB, Triplett EW, Schaefer CEGR, Camargo FAO, Roesch LFW (2014) Distribution and interaction patterns of bacterial communities in an ornithogenic soil of Seymour Island Antarctica. Microbial Ecol 69:684–694CrossRefGoogle Scholar
  58. Raymond MR, Wharton DA, Marshall CJ (2013) Factors determining nematode distributions at Cape Hallett and Gondwana station Antarctica. Antarct Sci 25:347–357CrossRefGoogle Scholar
  59. Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348. doi: 10.3389/fmicb.2012.00348 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Soucek Z, Mushin R (1970) Gastrointestinal bacteria of certain Antarctic birds and mammals. Appl Microbiol 20:561–566PubMedPubMedCentralGoogle Scholar
  61. Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215CrossRefPubMedGoogle Scholar
  62. Staley ZR, Robinson C, Edge TA (2016) Comparison of the occurrence and survival of fecal indicator bacteria in recreational sand between urban beach playground and sandbox settings in Toronto Ontario. Sci Total Environ 541:520–527CrossRefPubMedGoogle Scholar
  63. Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ (2015) Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol 15:51. doi: 10.1186/s12866-015-0388-6 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Suenaga H (2012) Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 14:13–22CrossRefPubMedGoogle Scholar
  65. Thouzeau C, Froget G, Monteil H, Le Maho Y, Harf-Monteil C (2003) Evidence of stress in bacteria associated with long-term preservation of food in the stomach of incubating King Penguins (Aptenodytes patagonicus). Polar Biol 26:115–123. doi: 10.1007/s00300-002-0451-2 Google Scholar
  66. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Micr 60:249–266CrossRefGoogle Scholar
  67. Trawińska B, Chmielowiec-Korzeniowska A, Nowakowicz-Dębek B, Tymczyna L, Bombik T, Pyrz M, Tymczyna-Sobotka M (2016) Evaluation of microbial contamination of feces and soil on a laying-hen farm depending on sampling site and season. Revista Brasileira de Zootecnia 45:190–194. doi: 10.1590/S1806-92902016000400007 CrossRefGoogle Scholar
  68. Vidal E, Jouventin P, Frenot Y (2003) Contribution of alien and indigenous species to plant-community assemblages near penguin rookeries at Crozet archipelago. Polar Biol 26:432–437. doi: 10.1007/s00300-003-0500-5 Google Scholar
  69. Wang NF, Zhang T, Zhang F, Wang ET, He JF, Ding H, Zhang BT, Liu J, Ran XB, Zang JY (2015) Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing. Front Microbiol 6:1188. doi: 10.3389/fmicb.2015.01188 PubMedPubMedCentralGoogle Scholar
  70. Ward NL, Steven B, Penn K, Methé BA, Detrich WH (2009) Characterization of the intestinal microbiota of two Antarctic notothenioid fish species. Extremophiles 13:679–685CrossRefPubMedGoogle Scholar
  71. Whitman RL, Nevers MB (2003) Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan Beach. Appl Environ Microbiol 69:5555–5562CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wilkinson N, Hughes RJ, Aspden WJ, Chapman J, Moore RJ, Stanley D (2016) The gastrointestinal tract microbiota of the Japanese quail, Coturnix japonica. Appl Microbiol Biotechnol 100:4201–4209CrossRefPubMedGoogle Scholar
  73. Wilson RP (1984) An improved stomach pump for penguins and other seabirds. J Field Ornithol 55:109–112. http://www.jstor.org/stable/4512864
  74. Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics structure-function analysis biological roles and applications. Annu Rev Microbiol 54:289–340CrossRefPubMedGoogle Scholar
  75. Yau S, Lauro FM, Williams TJ, DeMaere MZ, Brown MV, Rich J, Gibson JAE, Cavicchioli R (2013) Metagenomic insights into strategies of carbon conservation and unusual sulphur biogeochemistry in a hypersaline Antarctic lake. ISME J 7:1944–1961. doi: 10.1038/ismej.2013.69 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yew WC, Pearce DA, Dunn MJ, Samah AA, Convey P (2017) Bacterial community composition in Adélie (Pygoscelis adeliae) and Chinstrap (Pygoscelis antarctica) Penguin stomach contents from Signy Island, South Orkney Islands. Polar Biol. doi: 10.1007/s00300-017-2162-8 Google Scholar
  77. Zdanowski MK, Donachie SP (1993) Bacteria in the sea-ice zone between Elephant Island and the South Orkneys during the Polish sea-ice zone expedition (December 1988 to January 1989). Polar Biol 13:245–254CrossRefGoogle Scholar
  78. Zdanowski MK, Weglenski P, Golik P, Sasin JM, Borsuk P, Zmuda MJ, Stankovic A (2004) Bacterial diversity in Adélie Penguin Pygoscelis adeliae guano: molecular and morpho-physiological approaches. FEMS Microbiol Ecol 50:163–173CrossRefPubMedGoogle Scholar
  79. Zdanowski MK, Zmuda MJ, Zwolska I (2005) Bacterial role in the decomposition of marine-derived material (penguin guano) in the terrestrial maritime Antarctic. Soil Biol Biochem 37:581–595CrossRefGoogle Scholar
  80. Zwolicki A, Barcikowski M, Barcikowski A, Cymerski M, Stempniewicz L, Convey P (2015) Seabird colony effects on soil properties and vegetation zonation patterns on King George Island Maritime Antarctic. Polar Biol 38:1645–1655CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.National Antarctic Research Centre, Institute of Graduate StudiesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  3. 3.Institute of Ocean and Earth SciencesUniversity of MalayaKuala LumpurMalaysia
  4. 4.British Antarctic SurveyNERCCambridgeUK
  5. 5.Department of Applied Sciences, Faculty of Health and Life SciencesUniversity of Northumbria at NewcastleNewcastle upon TyneUK

Personalised recommendations