Advertisement

Polar Biology

, Volume 41, Issue 1, pp 25–40 | Cite as

Annual particulate matter and diatom export in a high nutrient, low chlorophyll area of the Southern Ocean

  • M. RembauvilleEmail author
  • I. Salter
  • F. Dehairs
  • J.-C. Miquel
  • S. Blain
Original Paper

Abstract

Upper ocean plankton assemblages are known to influence the export of carbon and biominerals from the mixed layer. However, relationships between plankton community structure and the magnitude and stoichiometry of export remain poorly characterized. We present data on biogeochemical and diatom export fluxes from the annual deployment of a sediment trap in a High Nutrient, Low Chlorophyll (HNLC) area upstream of the Kerguelen Plateau (KERFIX station). The weak and tidal-driven circulation provided favorable conditions for a quantitative analysis of export processes. Particulate organic carbon (POC) fluxes were highest in spring and summer. Biogenic silica (BSi) fluxes displayed similar seasonal patterns, although BSi:POC ratios were elevated in winter. Fragilariopsis kerguelensis dominated the annual diatom export assemblage (59.8% of the total valve flux). We identified clusters of diatom species that were positively or negatively correlated to the BSi:POC ratio. Our results indicate that the differential role of certain diatom species for carbon and silicon export, previously identified from iron-fertilized productive areas, is also valid in HNLC regimes. Although annual POC export below the mixed layer of the HNLC site is twofold lower that the one previously reported in a naturally iron-fertilized area of the Kerguelen Plateau, the fraction of seasonal net community production exported is similar at both sites (~1.5%). These findings suggest that natural iron fertilization increases the strength but not the efficiency of carbon export from the mixed layer.

Keywords

Kerguelen Plateau Export fluxes Diatoms HNLC Export efficiency 

Notes

Acknowledgements

We thank Catherine Jeandel, P. I. of the KERFIX project. Diatom taxonomy analyses were performed by J. J. Pichon at the EPOC laboratory. We thank Damien Cardinal for providing the freeze-dried material for BSi analyses. The International Atomic Energy Agency is grateful to the Government of the Principality of Monaco for the support provided to its Environment Laboratories. This work was supported by the Centre National de la Recherche Scientifique (CNRS–INSU), the Institut Polaire Paul Emile Victor (IPEV), and the project SOCLIM of climate initiative (Fondation BNP Paribas).

References

  1. Abdi H (2010) Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip Rev Comput Stat 2:97–106. doi: 10.1002/wics.51 CrossRefGoogle Scholar
  2. Alldredge AL, Gotschalk C, Passow U, Riebesell U (1995) Mass aggregation of diatom blooms: Insights from a mesocosm study. Deep Sea Res Part II 42:9–27. doi: 10.1016/0967-0645(95)00002-8 CrossRefGoogle Scholar
  3. Alvain S, Le Quéré C, Bopp L et al (2013) Rapid climatic driven shifts of diatoms at high latitudes. Remote Sens Environ 132:195–201. doi: 10.1016/j.rse.2013.01.014 CrossRefGoogle Scholar
  4. Aminot A, Kerouel R (2007) Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu. Ifremer, PlouzanéGoogle Scholar
  5. Assmy P, Smetacek V, Montresor M et al (2013) Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc Natl Acad Sci 110:20633–20638. doi: 10.1073/pnas.1309345110 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baker ET, Milburn HB, Tennant DA (1988) Field assessment of sediment trap efficiency under varying flow conditions. J Mar Res 46:573–592. doi: 10.1357/002224088785113522 CrossRefGoogle Scholar
  7. Bárcena MA, Abrantes F (1998) Evidence of a high-productivity area off the coast of Málaga from studies of diatoms in surface sediments. Mar Micropaleontol 35:91–103. doi: 10.1016/S0377-8398(98)00012-7 CrossRefGoogle Scholar
  8. Bergami C, Capotondi L, Langone L et al (2009) Distribution of living planktonic foraminifera in the Ross Sea and the Pacific sector of the Southern Ocean (Antarctica). Mar Micropaleontol 73:37–48. doi: 10.1016/j.marmicro.2009.06.007 CrossRefGoogle Scholar
  9. Blain S, Tréguer P, Belviso S et al (2001) A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep Sea Res Part I 48:163–187. doi: 10.1016/S0967-0637(00)00047-9 CrossRefGoogle Scholar
  10. Blain S, Quéguiner B, Armand L et al (2007) Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070–1074. doi: 10.1038/nature05700 PubMedCrossRefGoogle Scholar
  11. Blain S, Quéguiner B, Trull T (2008) The natural iron fertilization experiment KEOPS (KErguelen Ocean and Plateau compared Study): an overview. Deep Sea Res Part II 55:559–565. doi: 10.1016/j.dsr2.2008.01.002 CrossRefGoogle Scholar
  12. Blain S, Capparos J, Guéneuguès A et al (2015) Distributions and stoichiometry of dissolved nitrogen and phosphorus in the iron-fertilized region near Kerguelen (Southern Ocean). Biogeosciences 12:623–635. doi: 10.5194/bg-12-623-2015 CrossRefGoogle Scholar
  13. Booth BC, Larouche P, Bélanger S et al (2002) Dynamics of Chaetoceros socialis blooms in the North Water. Deep Sea Res Part II 49:5003–5025. doi: 10.1016/S0967-0645(02)00175-3 CrossRefGoogle Scholar
  14. Boyd PW, Newton PP (1995) Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep Sea Res Part I 42:619–639. doi: 10.1016/0967-0637(95)00017-Z CrossRefGoogle Scholar
  15. Boyd PW, Newton PP (1999) Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep Sea Res Part I 46:63–91. doi: 10.1016/S0967-0637(98)00066-1 CrossRefGoogle Scholar
  16. Boyd PW, Dillingham PW, McGraw CM et al (2016) Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Clim Change 6:207–213. doi: 10.1038/nclimate2811 Google Scholar
  17. Brand LE, Sunda WG, Guillard RRL (1983) Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol Oceanogr 28:1182–1198. doi: 10.4319/lo.1983.28.6.1182 CrossRefGoogle Scholar
  18. Buesseler KO, Antia AN, Chen M et al (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65:345–416CrossRefGoogle Scholar
  19. Buesseler KO, McDonnell AMP, Schofield OME et al (2010) High particle export over the continental shelf of the west Antarctic Peninsula. Geophys Res Lett 37:L22606. doi: 10.1029/2010GL045448 CrossRefGoogle Scholar
  20. Carlotti F, Thibault-Botha D, Nowaczyk A, Lefèvre D (2008) Zooplankton community structure, biomass and role in carbon fluxes during the second half of a phytoplankton bloom in the eastern sector of the Kerguelen Shelf (January–February 2005). Deep Sea Res Part II 55:720–733. doi: 10.1016/j.dsr2.2007.12.010 CrossRefGoogle Scholar
  21. Cavagna AJ, Fripiat F, Elskens M et al (2015) Production regime and associated N cycling in the vicinity of Kerguelen Island, Southern Ocean. Biogeosciences 12:6515–6528. doi: 10.5194/bg-12-6515-2015 CrossRefGoogle Scholar
  22. Cavan EL, Le Moigne FAC, Poulton AJ et al (2015) Zooplankton fecal pellets control the attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean. Geophys Res Lett. doi: 10.1002/2014GL062744 Google Scholar
  23. Coppola L, Roy-Barman M, Wassmann P et al (2002) Calibration of sediment traps and particulate organic carbon export using 234Th in the Barents Sea. Mar Chem 80:11–26. doi: 10.1016/S0304-4203(02)00071-3 CrossRefGoogle Scholar
  24. Crosta X, Romero O, Armand LK, Pichon J-J (2005) The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species. Palaeogeogr Palaeoclimatol Palaeoecol 223:66–92. doi: 10.1016/j.palaeo.2005.03.028 CrossRefGoogle Scholar
  25. Davidson AT, McKinley J, Westwood K et al (2016) Enhanced CO2 concentrations change the structure of Antarctic marine microbial communities. Mar Ecol Prog Ser 552:93–113. doi: 10.3354/meps11742 CrossRefGoogle Scholar
  26. de Baar HJW, Buma AGJ, Nolting RF et al (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Ecol Prog Ser 65:105–122. doi: 10.3354/meps065105 CrossRefGoogle Scholar
  27. de Baar HJW, de Jong JTM, Bakker DCE et al (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373:412–415. doi: 10.1038/373412a0 CrossRefGoogle Scholar
  28. Dehairs F, Jeandel C, Cattaldo T et al (1996) Barium-barite as a tracer of export production: some information from the water column. In: Ragueneau O (ed) Proceedings of the symposium OPALEO. Brest, pp 175–192Google Scholar
  29. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732. doi: 10.1016/0016-7037(81)90006-5 CrossRefGoogle Scholar
  30. Fiala M, Kopczynska EE, Jeandel C et al (1998) Seasonal and interannual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. J Plankton Res 20:1341–1356. doi: 10.1093/plankt/20.7.1341 CrossRefGoogle Scholar
  31. Fischer G, Gersonde R, Wefer G (2002) Organic carbon, biogenic silica and diatom fluxes in the marginal winter sea-ice zone and in the Polar Front Region: Interannual variations and differences in composition. Deep Sea Res Part II 49:1721–1745. doi: 10.1016/S0967-0645(02)00009-7 CrossRefGoogle Scholar
  32. Gardner WD (1980) Field assessment of sediment traps. J Mar Res 38:41–52Google Scholar
  33. Grigorov I, Rigual-Hernandez AS, Honjo S et al (2014) Settling fluxes of diatoms to the interior of the Antarctic circumpolar current along 170°W. Deep Sea Res Part I 93:1–13. doi: 10.1016/j.dsr.2014.07.008 CrossRefGoogle Scholar
  34. Guidi L, Legendre L, Reygondeau G et al (2015) A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob Biogeochem Cycles 29:1044–1059. doi: 10.1002/2014GB005063 CrossRefGoogle Scholar
  35. Hamm CE, Merkel R, Springer O et al (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843. doi: 10.1038/nature01416 PubMedCrossRefGoogle Scholar
  36. Hasle GR, Syvertsen EE (1997) Chapter 2 - Marine Diatoms. In: Tomas CR (ed) Identifying Marine Phytoplankton. Academic Press, San Diego, pp 5–385CrossRefGoogle Scholar
  37. Hawley N (1988) Flow in cylindrical sediment traps. J Great Lakes Res 14:76–88. doi: 10.1016/S0380-1330(88)71534-8 CrossRefGoogle Scholar
  38. Henson SA, Beaulieu C, Lampitt R (2016) Observing climate change trends in ocean biogeochemistry: when and where. Glob Chang Biol 22:1561–1571. doi: 10.1111/gcb.13152 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hunt BPV, Pakhomov EA, Hosie GW, Siegel V, Ward P, Bernard K (2008) Pteropods in Southern Ocean ecosystems. Prog Oceanogr 78:193–221. doi: 10.1016/j.pocean.2008.06.001 CrossRefGoogle Scholar
  40. Huntley ME, Lopez MD, Karl DM (1991) Top predators in the Southern ocean: a major leak in the biological carbon pump. Science 253:64–66. doi: 10.1126/science.1905841 PubMedCrossRefGoogle Scholar
  41. Jacquet SH, Lam PJ, Trull T, Dehairs F (2011) Carbon export production in the subantarctic zone and polar front zone south of Tasmania. Deep Sea Res Part 2(58):2277–2292. doi: 10.1016/j.dsr2.2011.05.035 CrossRefGoogle Scholar
  42. Jeandel C, Ruiz-Pino D, Gjata E et al (1998) KERFIX, a time-series station in the Southern Ocean: a presentation. J Mar Syst 17:555–569. doi: 10.1016/S0924-7963(98)00064-5 CrossRefGoogle Scholar
  43. Jouandet MP, Blain S, Metzl N et al (2008) A seasonal carbon budget for a naturally iron-fertilized bloom over the Kerguelen Plateau in the Southern Ocean. Deep Sea Res Part II 255:856–867. doi: 10.1016/j.dsr2.2007.12.037 CrossRefGoogle Scholar
  44. Jungandreas A, Wagner H, Wilhelm C (2012) Simultaneous measurement of the silicon content and physiological parameters by FTIR spectroscopy in diatoms with siliceous cell walls. Plant Cell Physiol 53:2153–2162. doi: 10.1093/pcp/pcs144 PubMedCrossRefGoogle Scholar
  45. Kopczyńska EE, Fiala M, Jeandel C (1998) Annual and interannual variability in phytoplankton at a permanent station off Kerguelen Islands, Southern Ocean. Polar Biol 20:342–351. doi: 10.1007/s003000050312 CrossRefGoogle Scholar
  46. Lam PJ, Bishop JKB (2007) High biomass, low export regimes in the Southern Ocean. Deep Sea Res Part II 54:601–638. doi: 10.1016/j.dsr2.2007.01.013 CrossRefGoogle Scholar
  47. Lam PJ, Doney SC, Bishop JKB (2011) The dynamic ocean biological pump: insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. Glob Biogeochem Cycles 25:GB3009. doi: 10.1029/2010GB003868 CrossRefGoogle Scholar
  48. Laurenceau-Cornec EC, Trull TW, Davies DM et al (2015) Phytoplankton morphology controls on marine snow sinking velocity. Mar Ecol Prog Ser 520:35–56. doi: 10.3354/meps11116 CrossRefGoogle Scholar
  49. Laws EA, D’Sa E, Naik P (2011) Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol Oceanogr Methods 9:593–601. doi: 10.4319/lom.2011.9.593 CrossRefGoogle Scholar
  50. Le Moigne FAC, Henson SA, Cavan E et al (2016) What causes the inverse relationship between primary production and export efficiency in the Southern Ocean? Geophys Res Lett 14:54–86. doi: 10.1002/2016GL068480 Google Scholar
  51. Lombard F, Labeyrie L, Michel E et al (2011) Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach. Biogeosciences 8:853–873. doi: 10.5194/bg-8-853-2011 CrossRefGoogle Scholar
  52. Louanchi F, Ruiz-Pino DP, Jeandel C et al (2001) Dissolved inorganic carbon, alkalinity, nutrient and oxygen seasonal and interannual variations at the Antarctic Ocean JGOFS-KERFIX site. Deep Sea Res Part I 48:1581–1603. doi: 10.1016/S0967-0637(00)00086-8 CrossRefGoogle Scholar
  53. Maiti K, Charette MA, Buesseler KO, Kahru M (2013) An inverse relationship between production and export efficiency in the Southern Ocean. Geophys Res Lett 40:1557–1561. doi: 10.1002/grl.50219 CrossRefGoogle Scholar
  54. Maraldi C, Lyard F, Testut L, Coleman R (2011) Energetics of internal tides around the Kerguelen Plateau from modeling and altimetry. J Geophys Res Oceans 116:C06004. doi: 10.1029/2010JC006515 CrossRefGoogle Scholar
  55. Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 345:156–158. doi: 10.1038/345156a0 CrossRefGoogle Scholar
  56. Matsuno K, Yamaguchi A, Fujiwara A et al (2014) Seasonal changes in mesozooplankton swimmers collected by sediment trap moored at a single station on the Northwind Abyssal Plain in the western Arctic Ocean. J Plankton Res 36:490–502. doi: 10.1093/plankt/fbt092 CrossRefGoogle Scholar
  57. McEwen GF, Johnson MW, Folsom TR (1954) A statistical analysis of the performance of the folsom plankton sample splitter, based upon test observations. Arch Meteorol Geophys Biocl A 7:502–527. doi: 10.1007/BF02277939 CrossRefGoogle Scholar
  58. McQuoid MR, Hobson LA (1996) Diatom Resting Stages. J Phycol 32:889–902. doi: 10.1111/j.0022-3646.1996.00889.x CrossRefGoogle Scholar
  59. Merlivat L, Boutin J, Antoine D (2015) Roles of biological and physical processes in driving seasonal air–sea CO2 flux in the Southern Ocean: new insights from CARIOCA pCO2. J Mar Syst 147:9–20. doi: 10.1016/j.jmarsys.2014.04.015 CrossRefGoogle Scholar
  60. Minas H, Minas M (1992) Net community production in high nutrient-low chlorophyll waters of the tropical and antarctic oceans—grazing vs iron hypothesis. Oceanol Acta 15:145–162Google Scholar
  61. Minas HJ, Minas M, Packard TT (1986) Productivity in upwelling areas deduced from hydrographic and chemical fields. Limnol Oceanogr 31:1182–1206. doi: 10.4319/lo.1986.31.6.1182 CrossRefGoogle Scholar
  62. Miquel JC, Fowler SW, La Rosa J, Buat-Menard P (1994) Dynamics of the downward flux of particles and carbon in the open northwestern Mediterranean Sea. Deep Sea Res Part I 41:243–261. doi: 10.1016/0967-0637(94)90002-7 CrossRefGoogle Scholar
  63. Moore CM, Hickman AE, Poulton AJ et al (2007) Iron–light interactions during the CROZet natural iron bloom and EXport experiment (CROZEX): II—Taxonomic responses and elemental stoichiometry. Deep Sea Res Part II 54:2066–2084. doi: 10.1016/j.dsr2.2007.06.015 CrossRefGoogle Scholar
  64. Morris PJ, Sanders R, Turnewitsch R, Thomalla S (2007) 234Th-derived particulate organic carbon export from an island-induced phytoplankton bloom in the Southern Ocean. Deep Sea Res Part II 54:2208–2232. doi: 10.1016/j.dsr2.2007.06.002 CrossRefGoogle Scholar
  65. Mortyn PG, Charles CD (2003) Planktonic foraminiferal depth habitat and δ18O calibrations: plankton tow results from the Atlantic sector of the Southern Ocean. Paleoceanography 18:1037. doi: 10.1029/2001PA000637 CrossRefGoogle Scholar
  66. Mosseri J, Quéguiner B, Rimmelin P et al (2005) Silica fluxes in the northeast Atlantic frontal zone of Mode Water formation (38°–45°N, 16°–22°W) in 2001–2002. J Geophys Res Oceans 110:C07S19. doi: 10.1029/2004JC002615 CrossRefGoogle Scholar
  67. Mosseri J, Quéguiner B, Armand L, Cornet-Barthaux V (2008) Impact of iron on silicon utilization by diatoms in the Southern Ocean: A case study of Si/N cycle decoupling in a naturally iron-enriched area. Deep Sea Res Part II 55:801–819. doi: 10.1016/j.dsr2.2007.12.003 CrossRefGoogle Scholar
  68. Muggli DL, Harrison PJ (1997) Effects of iron on two oceanic phytoplankters grown in natural NE subarctic pacific seawater with no artificial chelators present. J Exp Mar Biol Ecol 212:225–237. doi: 10.1016/S0022-0981(96)02752-9 CrossRefGoogle Scholar
  69. Nodder SD, Alexander BL (1999) The effects of multiple trap spacing, baffles and brine volume on sediment trap collection efficiency. J Mar Res 57:537–559. doi: 10.1357/002224099764805183 CrossRefGoogle Scholar
  70. Obernosterer I, Christaki U, Lefèvre D et al (2008) Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean. Deep Sea Res Part II 55:777–789. doi: 10.1016/j.dsr2.2007.12.005 CrossRefGoogle Scholar
  71. Park Y-H, Charriaud E, Pino DR, Jeandel C (1998) Seasonal and interannual variability of the mixed layer properties and steric height at station KERFIX, southwest of Kerguelen. J Mar Syst 17:571–586. doi: 10.1016/S0924-7963(98)00065-7 CrossRefGoogle Scholar
  72. Park Y-H, Fuda J-L, Durand I, Naveira Garabato AC (2008a) Internal tides and vertical mixing over the Kerguelen Plateau. Deep Sea Res Part II 55:582–593. doi: 10.1016/j.dsr2.2007.12.027 CrossRefGoogle Scholar
  73. Park Y-H, Roquet F, Durand I, Fuda J-L (2008b) Large-scale circulation over and around the Northern Kerguelen Plateau. Deep Sea Res Part II 55:566–581. doi: 10.1016/j.dsr2.2007.12.030 CrossRefGoogle Scholar
  74. Planchon F, Ballas D, Cavagna A-J et al (2015) Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach. Biogeosciences 12:3831–3848. doi: 10.5194/bg-12-3831-2015 CrossRefGoogle Scholar
  75. Pollard R, Sanders R, Lucas M, Statham P (2007) The Crozet natural iron bloom and export experiment (CROZEX). Deep Sea Res Part II 54:1905–1914. doi: 10.1016/j.dsr2.2007.07.023 CrossRefGoogle Scholar
  76. Pollard RT, Salter I, Sanders RJ et al (2009) Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature 457:577–580. doi: 10.1038/nature07716 PubMedCrossRefGoogle Scholar
  77. Pondaven P, Fravalo C, Ruiz-Pino D et al (1998) Modelling the silica pump in the permanently open Ocean Zone of the Southern Ocean. J Mar Syst 17:587–619. doi: 10.1016/S0924-7963(98)00066-9 CrossRefGoogle Scholar
  78. Pondaven P, Ruiz-Pino D, Fravalo C et al (2000) Interannual variability of Si and N cycles at the time-series station KERFIX between 1990 and 1995 – a 1-D modelling study. Deep Sea Res Part I 47:223–257. doi: 10.1016/S0967-0637(99)00053-9 CrossRefGoogle Scholar
  79. Quéguiner B (2013) Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean. Deep Sea Res Part II 90:43–54. doi: 10.1016/j.dsr2.2012.07.024 CrossRefGoogle Scholar
  80. Razouls S, Réau GD, Guillot P et al (1998) Seasonal abundance of copepod assemblages and grazing pressure in the Kerguelen Island area (Southern Ocean). J Plankton Res 20:1599–1614. doi: 10.1093/plankt/20.8.1599 CrossRefGoogle Scholar
  81. Rembauville M, Blain S, Armand L et al (2015a) Export fluxes in a naturally iron-fertilized area of the Southern Ocean—Part 2: importance of diatom resting spores and faecal pellets for export. Biogeosciences 12:3171–3195. doi: 10.5194/bg-12-3171-2015 CrossRefGoogle Scholar
  82. Rembauville M, Salter I, Leblond N et al (2015b) Export fluxes in a naturally iron-fertilized area of the Southern Ocean—Part 1: seasonal dynamics of particulate organic carbon export from a moored sediment trap. Biogeosciences 12:3153–3170. doi: 10.5194/bg-12-3153-2015 CrossRefGoogle Scholar
  83. Rembauville M, Manno C, Tarling GA et al (2016a) Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia. Deep Sea Res Part I 115:22–35. doi: 10.1016/j.dsr.2016.05.002 CrossRefGoogle Scholar
  84. Rembauville M, Meilland J, Ziveri P et al (2016b) Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau. Deep Sea Res Part I 111:91–101. doi: 10.1016/j.dsr.2016.02.017 CrossRefGoogle Scholar
  85. Rigual-Hernández AS, Trull TW, Bray SG et al (2015a) Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal zones of the Southern Ocean and their role in the biological pump. Biogeosciences 12:5309–5337. doi: 10.5194/bg-12-5309-2015 CrossRefGoogle Scholar
  86. Rigual-Hernández AS, Trull TW, Bray SG et al (2015b) Seasonal dynamics in diatom and particulate export fluxes to the deep sea in the Australian sector of the southern Antarctic Zone. J Mar Syst 142:62–74. doi: 10.1016/j.jmarsys.2014.10.002 CrossRefGoogle Scholar
  87. Romero OE, Armand L (2010) Marine diatoms as indicators of modern changes in oceanographic conditions. In: Smol J, Stoermer E (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 373–400. doi: 10.1017/CBO9780511763175.021 CrossRefGoogle Scholar
  88. Romero OE, Lange CB, Fisher G et al (1999) Variability in export prodution documented by downward fluxes and species composition of marine planktonic diatoms: observations from the tropical and equatorial Atlantic. In: Fisher G, Wefer G (eds) The use of proxies in paleoceanography, examples from the South Atlantic. Springer, Berlin, pp 365–392. doi: 10.1007/978-3-642-58646-0_14 CrossRefGoogle Scholar
  89. Saavedra-Pellitero M, Baumann K-H, Flores J-A, Gersonde R (2014) Biogeographic distribution of living coccolithophores in the Pacific sector of the Southern Ocean. Mar Micropaleontol 109:1–20. doi: 10.1016/j.marmicro.2014.03.003 CrossRefGoogle Scholar
  90. Sadeghi A, Dinter T, Vountas M et al (2012) Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data. Biogeosciences 9:2127–2143. doi: 10.5194/bg-9-2127-2012 CrossRefGoogle Scholar
  91. Salter I, Lampitt RS, Sanders R et al (2007) Estimating carbon, silica and diatom export from a naturally fertilised phytoplankton bloom in the Southern Ocean using PELAGRA: A novel drifting sediment trap. Deep Sea Res Part II 54:2233–2259. doi: 10.1016/j.dsr2.2007.06.008 CrossRefGoogle Scholar
  92. Salter I, Kemp AES, Moore CM et al (2012) Diatom resting spore ecology drives enhanced carbon export from a naturally iron-fertilized bloom in the Southern Ocean. Glob Biogeochem Cycles 26:GB1014. doi: 10.1029/2010GB003977 CrossRefGoogle Scholar
  93. Salter I, Galand PE, Fagervold SK et al (2014a) Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. doi: 10.1038/ismej.2014.129 PubMedPubMedCentralGoogle Scholar
  94. Salter I, Schiebel R, Ziveri P et al (2014b) Carbonate counter pump stimulated by natural iron fertilization in the Polar Frontal Zone. Nat Geosci 7:885–889. doi: 10.1038/ngeo2285 CrossRefGoogle Scholar
  95. Savoye N, Trull TW, Jacquet SHM et al (2008) 234Th-based export fluxes during a natural iron fertilization experiment in the Southern Ocean (KEOPS). Deep Sea Res Part II 55:841–855. doi: 10.1016/j.dsr2.2007.12.036 CrossRefGoogle Scholar
  96. Schrader HJ, Gersonde R (1978) Diatoms and silicofagellates. Micropaleontological counting methods and techniques: an exercise on an eight metres section of the Lower Pliocene of Capo Rosello, Sicily. Utrecht Micropaleontol Bull 129–176Google Scholar
  97. Schulz M, Mudelsee M (2002) REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput Geosci 28:421–426. doi: 10.1016/S0098-3004(01)00044-9 CrossRefGoogle Scholar
  98. Sell DW, Evans MS (1982) A statistical analysis of subsampling and an evaluation of the Folsom plankton splitter. Hydrobiologia 94:223–230. doi: 10.1007/BF00016403 CrossRefGoogle Scholar
  99. Smetacek V, Assmy P, Henjes J (2004) The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct Sci 16:541–558. doi: 10.1017/S0954102004002317 CrossRefGoogle Scholar
  100. Smetacek V, Klaas C, Strass VH et al (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487:313–319. doi: 10.1038/nature11229 PubMedCrossRefGoogle Scholar
  101. Stukel MR, Asher E, Couto N et al (2015) The imbalance of new and export production in the western Antarctic Peninsula, a potentially “leaky” ecosystem. Glob Biogeochem Cycles 29:GB005211. doi: 10.1002/2015GB005211 CrossRefGoogle Scholar
  102. Tarling GA, Ward P, Atkinson A et al (2012) DISCOVERY 2010: Spatial and temporal variability in a dynamic polar ecosystem. Deep Sea Res Part II Top Stud Oceanogr 59–60:1–13. doi: 10.1016/j.dsr2.2011.10.001 CrossRefGoogle Scholar
  103. Ternois Y, Sicre M-A, Boireau A et al (1998) Hydrocarbons, sterols and alkenones in sinking particles in the Indian Ocean sector of the Southern Ocean. Org Geochem 28:489–501. doi: 10.1016/S0146-6380(98)00008-4 CrossRefGoogle Scholar
  104. Tesi T, Langone L, Ravaioli M et al (2012) Particulate export and lateral advection in the Antarctic Polar Front (Southern Pacific Ocean): one-year mooring deployment. J Mar Syst 105–108:70–81. doi: 10.1016/j.jmarsys.2012.06.002 CrossRefGoogle Scholar
  105. Twining BS, Baines SB, Fisher NS (2004) Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX). Limnol Oceanogr 49:2115–2128. doi: 10.4319/lo.2004.49.6.2115 CrossRefGoogle Scholar
  106. Tyrrell T, Merico A, Waniek JJ et al (2005) Effect of seafloor depth on phytoplankton blooms in high-nitrate, low-chlorophyll (HNLC) regions. J Geophys Res Biogeosci 110:G02007. doi: 10.1029/2005JG000041 CrossRefGoogle Scholar
  107. Winter A, Henderiks J, Beaufort L et al (2014) Poleward expansion of the coccolithophore Emiliania huxleyi. J Plankton Res 36:316–325. doi: 10.1093/plankt/fbt110 CrossRefGoogle Scholar
  108. Zielinski U, Gersonde R (1997) Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 129:213–250. doi: 10.1016/S0031-0182(96)00130-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. Rembauville
    • 1
    Email author
  • I. Salter
    • 1
    • 2
  • F. Dehairs
    • 3
  • J.-C. Miquel
    • 4
  • S. Blain
    • 1
  1. 1.Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire OcéanologiqueSorbonne Universités, UPMC Univ Paris 06, CNRSBanyuls-sur-MerFrance
  2. 2.Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  3. 3.Analytical, Environmental and Geo – Chemistry, Earth System Sciences Research GroupVrije Universiteit BrusselBrusselsBelgium
  4. 4.International Atomic Energy Agency, Environment LaboratoriesMonacoMonaco

Personalised recommendations