Polar Biology

, Volume 40, Issue 12, pp 2381–2396 | Cite as

Thermal autecology describes the occurrence patterns of four benthic diatoms in McMurdo Dry Valley streams

  • Joshua P. Darling
  • Deena D. Garland
  • Lee F. Stanish
  • Rhea M. M. Esposito
  • Eric R. Sokol
  • Diane M. McKnight
Original Paper


Benthic microbial mats in the glacial-fed meltwater streams are hotspots of productivity in the McMurdo Dry Valleys (MDV), Antarctica. Benthic diatoms are common in these mats and the >45 primarily endemic taxa represent the most diverse group of eukaryotes in the MDV. In this harsh polar desert, streams are thermally dynamic with daily water temperatures varying 6–9 °C and daily maximum temperatures as high as 15 °C. Stream temperature may play a role in determining growth rates and survival strategies. To understand taxon-specific adaptations to their environment, we measured the growth rates of unialgal cultures of four diatom taxa (Psammothidium papilio, Hantzschia abundans, Hantzschia amphioxys, and Hantzschia amphioxys f. muelleri) under three temperature conditions (7.6, 10, and 15 °C) that were representative of maximum daily stream temperatures. We found that P. papilio exhibited a constant growth rate across the full temperature range; this species is most common in streams that begin to flow early in the summer and with less variable thermal regimes. Growth rates for H. abundans were greatest at 15 °C, but showed a non-linear relationship with temperature. H. amphioxys f. muelleri grew faster than the other taxa studied and thrived at 10 °C. Hantzschia amphioxys grew only at the two lower temperatures. These results aligned with the observed relationships between each taxon’s relative abundance and stream temperatures in the long-term record maintained by the MDV Long-Term Ecological Research program. Overall, our observations suggest that differences in thermal optima may be one factor contributing to and maintaining the diversity of benthic diatom flora in the MDV.


Polar diatoms Growth rate Temperature In vivo fluorescence Antarctica Long-Term Ecological Research (LTER) 



We would like to thank Chris Jaros, Kathi Hell, and Ian Bishop for technical and logistical support; Adam Wlostowski, who helped to provide stream temperature data; and Kateřina Kopalová and Bart Van de Vijver, who generously provided scanning electron micrographs of MDV diatoms. This work was supported by the McMurdo Dry Valley’s Long-Term Ecological Research project, NSF #1115245.

Supplementary material

300_2017_2151_MOESM1_ESM.pdf (335 kb)
Supplementary material 1 (PDF 335 kb)


  1. Adams BJ, Bardgett RD, Ayres E et al (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018. doi: 10.1016/j.soilbio.2006.04.030 CrossRefGoogle Scholar
  2. Admiraal W (1976) Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Mar Biol 39:1–9. doi: 10.1111/j.0022-3646.1997.00171.x CrossRefGoogle Scholar
  3. Aletsee L, Jahnke J (1992) Growth and productivity of the psychrophilic marine diatoms Thalassiosira antarctica Comber and Nitzschia frigida Grunow in batch cultures at temperatures below the freezing point of sea water. Polar Biol 11:643–647. doi: 10.1007/BF00237960 CrossRefGoogle Scholar
  4. Alger AS, McKnight DM, Spaulding SA et al (1997) Ecological processes in a cold desert ecosystem: the abundance and species distribution of algal mats in glacial meltwater streams in Taylor Valley. Occasional paper/University of Colorado, AntarcticaGoogle Scholar
  5. Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684. doi: 10.1128/MMBR.00007-12 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Andersen RA (ed) (2005) Algal culturing techniques. Elsevier/Academic Press, BurlingtonGoogle Scholar
  7. Barton K (2015) MuMIn: Multi-Model Inference. R-package version 1.15.6. https://CRAN.R-project.org/package=MuMIn
  8. Butterwick C, Heaney SI, Talling JF (2004) Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance: temperature and growth rates of planktonic algae. Freshw Biol 50:291–300. doi: 10.1111/j.1365-2427.2004.01317.x CrossRefGoogle Scholar
  9. Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci 104:17430CrossRefPubMedPubMedCentralGoogle Scholar
  10. Conovitz PA, McKnight DM, MacDonald LH, et al (1998) Hydrologic processes influencing streamflow variation in Fryxell Basin, Antarctica. American Geophysical Union, pp 93–108Google Scholar
  11. Convey P, Bindschadler R, di Prisco G et al (2009) Antarctic climate change and the environment. Antarct Sci 21:541–563. doi: 10.1017/S0954102009990642 CrossRefGoogle Scholar
  12. Cozzetto K, McKnight D, Nylen T, Fountain A (2006) Experimental investigations into processes controlling stream and hyporheic temperatures, Fryxell Basin, Antarctica. Adv Water Resour 29:130–153. doi: 10.1016/j.advwatres.2005.04.012 CrossRefGoogle Scholar
  13. Cvetkovska M, Hüner NPA, Smith DR (2016) Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biol. doi: 10.1007/s00300-016-2045-4 Google Scholar
  14. Davey MC (1989) The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol 10:29–36CrossRefGoogle Scholar
  15. Doran PT, McKay CP, Clow GD et al (2002) Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. J Geophys Res. doi: 10.1029/2001JD002045 Google Scholar
  16. Esposito RMM, Horn SL, McKnight DM et al (2006) Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophys Res Lett. doi: 10.1029/2006GL025903 Google Scholar
  17. Esposito RMM, Spaulding SA, McKnight DM et al (2008) Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica. Botany 86:1378–1392. doi: 10.1139/B08-100 CrossRefGoogle Scholar
  18. Fiala M, Oriol L (1990) Light-temperature interactions on the growth of Antarctic diatoms. Polar Biol 10:629–636CrossRefGoogle Scholar
  19. Fountain AG, Nylen TH, Monaghan A et al (2009) Snow in the McMurdo Dry Valleys. Int J Climatol, Antarctica. doi: 10.1002/joc.1933 Google Scholar
  20. Fox J, Weisberg S (2010) An R companion to applied regression. R package version 200-4. Sage, Thousand OaksGoogle Scholar
  21. Gilstad M, Sakshaug E (1990) Growth rates of ten diatom species from the Barents Sea at different irradiances and day lengths. Mar Ecol Prog Ser Oldendorf 64:169–173CrossRefGoogle Scholar
  22. Gotelli NJ (2001) A primer of ecology, 3rd edn. Sinauer, SunderlandGoogle Scholar
  23. Hawes I, Howard-Williams C (1998) Primary production processes in streams of the Mcmurdo Dry Valleys, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys. American Geophysical Union, Antarctica, pp 129–140Google Scholar
  24. Hoover RB, Pikuta EV (2010) Psychrophilic and psychrotolerant microbial extremophiles in polar environments. Polar Microbiol 2010:115–156Google Scholar
  25. Hünken M, Harder J, Kirst GO (2008) Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biol 10:519–526. doi: 10.1111/j.1438-8677.2008.00040.x CrossRefPubMedGoogle Scholar
  26. Karsten U, Klimant I, Holst G (1996) A new in vivo fluorimetric technique to measure growth of adhering phototrophic microorganisms. Appl Environ Microbiol 62:237–243PubMedPubMedCentralGoogle Scholar
  27. Karsten U, Schumann R, Rothe S et al (2006) Temperature and light requirements for growth of two diatom species (Bacillariophyceae) isolated from an Arctic macroalga. Polar Biol 29:476–486. doi: 10.1007/s00300-005-0078-1 CrossRefGoogle Scholar
  28. Ko-Bayashi T (1965) Variations in Hantzschia amphioxys (Ehren.) Grun. var. recta O Müller. Scientific Reports of the Japanese Antarctic Research Expedition 1956–1962, pp 13–16Google Scholar
  29. Kohler TJ, Stanish LF, Crisp SW et al (2015) Life in the main channel: long-term hydrologic control of microbial mat abundance in McMurdo Dry Valley Streams, Antarctica. Ecosystems 18:310–327. doi: 10.1007/s10021-014-9829-6 CrossRefGoogle Scholar
  30. Kohler TJ, Van Horn DJ, Darling JP et al (2016) Nutrient treatments alter microbial mat colonization in two glacial meltwater streams from the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol. doi: 10.1093/femsec/fiw049 Google Scholar
  31. Konfirst MA, Sjunneskog C, Scherer RP, Doran PT (2011) A diatom record of environmental change in Fryxell Basin, Taylor Valley, Antarctica, late Pleistocene to present. J Paleolimnol 46:257–272. doi: 10.1007/s10933-011-9537-6 CrossRefGoogle Scholar
  32. Kopalová K (2012) Benthic diatoms (Bacillariophyta) from seepages and streams on James Ross Island (NW Weddell Sea, Antarctica). Plant Ecol Evol 145:190–208. doi: 10.5091/plecevo.2012.639 CrossRefGoogle Scholar
  33. Kutlu B, Buyukisik B (2011) Investigations of the growth kinetics of Hantzschia amphioxys homa lagoon by izmir bay (Aegean Sea). Indian J Geo-Mar Sci 40:522–528Google Scholar
  34. Levy J (2013) How big are the McMurdo Dry Valleys? Estimating ice-free area using Landsat image data. Antarct Sci 25:119–120. doi: 10.1017/S0954102012000727 CrossRefGoogle Scholar
  35. Longhi ML, Schloss IR, Wiencke C (2003) Effect of irradiance and temperature on photosynthesis and growth of two Antarctic benthic diatoms, Gyrosigma subsalinum and Odontella litigiosa. Bot Mar 46:276–284CrossRefGoogle Scholar
  36. Madigan MT, Martinko JM, Dunlap PV, Clark DP (2009) Microbial growth. In: Brock biology of microorganisms, 12th edn. Peason Education, San FranciscoGoogle Scholar
  37. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  38. McKnight DM, Tate CM (1995) McMurdo LTER: algal mat distribution in glacial meltwater streams in Taylor Valley, southern Victoria Land, Antarctica. Antarct J U S 30:287–289Google Scholar
  39. Montagnes DJ, Franklin M (2001) Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol Oceanogr 46:2008–2018CrossRefGoogle Scholar
  40. Morgan-Kiss RM, Priscu JC, Pocock T et al (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252. doi: 10.1128/MMBR.70.1.222-252.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144PubMedPubMedCentralGoogle Scholar
  42. Müller O (1909) Bacillariaceen aus Süd-Patagonien. Beiblatt zu den Botanischen Jahrbüchern. (Engler’s). Bot Jahrb Syst Pflanzengesch Pflanzengeogr 40:1–40Google Scholar
  43. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  44. Patrick R (1948) Factors Effecting The Distribution Of Diatoms. Bot Rev 14:473–524CrossRefGoogle Scholar
  45. Patrick R, Reimer CW (1966) Diatoms of the United States, Monograph 13. Academy of Natural Sciences, PhiladelphiaGoogle Scholar
  46. Pinheiro J, Bates D, DebRoy S, et al (2017) nlme: linear and nonlinear mixed effects models. R package version 3.1-131. https://CRAN.R-project.org/package=nlme
  47. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  48. Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461. doi: 10.1111/j.1469-8137.1988.tb00282.x CrossRefGoogle Scholar
  49. Sabbe K, Verleyen E, Hodgson DA et al (2003) Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarct Sci 15:227–248. doi: 10.1017/S095410200300124X CrossRefGoogle Scholar
  50. Sakaeva A, Sokol ER, Kohler TJ et al (2016) Evidence for dispersal and habitat controls on pond diatom communities from the McMurdo Sound Region of Antarctica. Polar Biol 39:2441–2456. doi: 10.1007/s00300-016-1901-6 CrossRefGoogle Scholar
  51. Seaburg KG, Parked BC, Wharton RA, Simmons GM (1981) Temperature-growth responses of algal isolates from Antarctic Oases. J Phycol 17:353–360. doi: 10.1007/s00300-016-1901-6 CrossRefGoogle Scholar
  52. Smol JP, Stoermer EF (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. Sokol ER, Herbold CW, Lee CK et al (2013) Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere. doi: 10.1890/ES13-00136.1 Google Scholar
  54. Souffreau C, Vanormelingen P, Verleyen E et al (2010) Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia 49:309–324. doi: 10.2216/09-30.1 CrossRefGoogle Scholar
  55. Souffreau C, Vanormelingen P, Van de Vijver B et al (2013) Molecular evidence for distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys. Protist 164:101–115. doi: 10.1016/j.protis.2012.04.001 CrossRefPubMedGoogle Scholar
  56. Spaulding SA, Van de Vijver B, Hodgson DA, et al (2010) Diatoms as indicators of environmental change in Antarctic and subantarctic freshwaters. Diatoms Appl Environ Earth Sci 267Google Scholar
  57. Stanish LF, Nemergut DR, McKnight DM (2011) Hydrologic processes influence diatom community composition in Dry Valley streams. J North Am Benthol Soc 30:1057–1073. doi: 10.1899/11-008.1 CrossRefGoogle Scholar
  58. Stanish LF, Kohler TJ, Esposito RMM et al (2012) Extreme streams: flow intermittency as a control on diatom communities in meltwater streams in the McMurdo Dry Valleys, Antarctica. Can J Fish Aquat Sci 69:1405–1419. doi: 10.1139/f2012-022 CrossRefGoogle Scholar
  59. Stanish LF, O’Neill SP, Gonzalez A et al (2013) Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams: diatom: bacteria co-occurrence in Dry Valley streams. Environ Microbiol 15:1115–1131. doi: 10.1111/j.1462-2920.2012.02872.x CrossRefPubMedGoogle Scholar
  60. Suzuki Y, Takahashi M (1995) Growth responses of several diatom species isolated from various environments to temperature. J Phycol 31:880–888. doi: 10.1111/j.0022-3646.1995.00880.x CrossRefGoogle Scholar
  61. Tang EP, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J Phycol 33:171–181CrossRefGoogle Scholar
  62. Turner J, Bindschadler R, Convey P et al (2009) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, CambridgeGoogle Scholar
  63. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  64. Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385CrossRefGoogle Scholar
  65. Vincent WF, Vincent CL (1982) Response to nutrient enrichment by the plankton of Antarctic coastal lakes and the inshore Ross Sea. Polar Biol 1:159–165CrossRefGoogle Scholar
  66. von Guerard P, McKnight DM, Harnish RA et al (1995) Streamflow, water-temperature, and specific-conductance data for selected streams draining into Lake Fryxell, Lower Taylor Valley, Victoria Land, Antarctica, 1990–1992. U.S. Geological Survey, DenverGoogle Scholar
  67. Wall DH (2007) Global change tipping points: above- and below-ground biotic interactions in a low diversity ecosystem. Philos Trans R Soc B Biol Sci 362:2291–2306. doi: 10.1098/rstb.2006.1950 CrossRefGoogle Scholar
  68. Weckstrom J, Korhola A, Blom T (1997) The relationship between diatoms and water temperature in thirty subarctic Fennoscandian lakes. Arct Alp Res 29:75. doi: 10.2307/1551838 CrossRefGoogle Scholar
  69. Yates GT, Smotzer T (2007) On the lag phase and initial decline of microbial growth curves. J Theor Biol 244:511–517CrossRefPubMedGoogle Scholar
  70. Zidarova R (2008) Algae from Livingston Island (S Shetland Islands): a checklist. Phytol Balc 14:19–35Google Scholar
  71. Zidarova R, Van de Vijver B, Quesada A, de Haan M (2010) Revision of the genus Hantzschia (Bacillariophyceae) on Livingston Island (South Shetland Islands, Southern Atlantic Ocean). Plant Ecol Evol 143:318–333. doi: 10.5091/plecevo.2010.402 CrossRefGoogle Scholar
  72. Zuur A, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar
  73. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi: 10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Joshua P. Darling
    • 1
  • Deena D. Garland
    • 1
  • Lee F. Stanish
    • 2
  • Rhea M. M. Esposito
    • 3
  • Eric R. Sokol
    • 1
    • 2
  • Diane M. McKnight
    • 1
  1. 1.Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  2. 2.National Ecological Observatory Network Inc.BoulderUSA
  3. 3.Cary Institute of Ecosystem StudiesMillbrookUSA

Personalised recommendations