Polar Biology

, Volume 40, Issue 10, pp 2055–2062 | Cite as

Investigating the ancestry of putative hybrids: are Arctic fox and red fox hybridizing?

  • Glenn Yannic
  • Mark J. Statham
  • Laure Denoyelle
  • Guillaume Szor
  • George Q. Qulaut
  • Benjamin N. Sacks
  • Nicolas Lecomte
Original Paper

Abstract

Global climate change induces species range shifts and population expansion to higher latitudes in response to rising temperatures. One consequence of climate-induced range shifts is an increased sympatry between related but previously isolated species, potentially resulting in interspecific interactions and hybridization. The Arctic is more rapidly affected by climate warming than any region on Earth and resident species may be prone to interspecific hybridization due to the immigration of new colonizing species. The red fox Vulpes vulpes expanded its range into the Arctic during the twentieth century and is now in sympatry with the native Arctic fox Vulpes lagopus in many places. In this context, an Arctic-like fox displaying an unusual reddish winter coat was observed in 2013 in Nunavut, Canada, a phenotype unknown by Inuit people to date. In this study, we assessed the biological origin of this specimen with a multigenic approach using markers located on mitochondrial DNA, sex (X and Y) chromosomes, and autosomes (microsatellites and the melanocortin 1 receptor (MC1R) gene; a gene involved in the color polymorphism in canids). Our comparative analyses with genetic material from Arctic and red foxes displaying “classic” phenotypes (N = 14 and 16, respectively) suggested a pure Arctic fox origin of the specimen. Specifically, this fox yielded mtDNA, X-linked, Y-linked, and MC1R alleles specific to Arctic fox. Bayesian genetic assignment based on 16 microsatellite loci assigned it to Arctic fox with high confidence (q = 99.7%). Thus, a recent hybrid origin for this specimen is excluded. This alternative winter coat color polymorphism in Arctic fox requires further analyses to determine its underlying genetic mechanism.

Keywords

Vulpes lagopus Vulpes vulpes Climate warming Species expansion mtDNA Sexual chromosome MC1R 

Notes

Acknowledgements

We thank the Government of Nunavut for its logistical support. Field work was supported by (alphabetical order) Canada Foundation for Innovation, Canada Research Chairs, Environment Canada, Government of Nunavut, Indian and Northern Affairs Canada, Igloolik Hunters and Trappers Organization, Natural Sciences and Engineering Research Council of Canada, Polar Continental Shelf Project (PCSP), and Université de Moncton. Funding for laboratory work was provided by a LabEx OSUG@2020 grant to GY. Pictures of Arctic foxes (Fig. 1) were kindly provided by Emmanuelle Pouivé (a) and Philippe Garcia (b–d; http://www.explographe.com). We also thank Nathalie Tissot and Nadine Curt-Grand-Gaudin for lab assistance. Comments by Thomas Broquet and Christophe Dufresnes improved the clarity of this work.

Supplementary material

300_2017_2126_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1092 kb)

References

  1. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622CrossRefGoogle Scholar
  2. Anderson TM, vonHoldt BM, Candille SI, Musiani M, Greco C, Stahler DR, Smith DW, Padhukasahasram B, Randi E, Leonard JA, Bustamante CD, Ostrander EA, Tang H, Wayne RK, Barsh GS (2009) Molecular and evolutionary history of melanism in North American Gray wolves. Science 323:1339–1343CrossRefPubMedPubMedCentralGoogle Scholar
  3. Angerbjörn A, Tannerfeldt M (2014) Vulpes lagopus. The IUCN Red List of Threatened Species, version 2014.3. http://www.iucnredlist.org. Accessed 7 May 2015
  4. Angerbjörn A, Eide NE, Dalén L, Elmhagen B, Hellström P, Ims RA, Killengreen S, Landa A, Meijer T, Mela M, Niemimaa J, Norén K, Tannerfeldt M, Yoccoz NG, Henttonen H (2013) Carnivore conservation in practice: replicated management actions on a large spatial scale. J Appl Ecol 50:59–67CrossRefGoogle Scholar
  5. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  6. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefPubMedGoogle Scholar
  7. Creel GC, Thornton WA (1974) Study of a Vulpes fulvaVulpes macrotis hybrid fox karyotype. Southwest Nat 18:465–468CrossRefGoogle Scholar
  8. Dalén L, Elmhagen B, Angerbjörn A (2004) DNA analysis on fox faeces and competition induced niche shifts. Mol Ecol 13:2389–2392CrossRefPubMedGoogle Scholar
  9. Dalén L, Fuglei E, Hersteinsson P, Kapel CMO, Roth JD, Samelius G, Tannerfeldt M, Angerbjörn A (2005) Population history and genetic structure of a circumpolar species: the Arctic fox. Biol J Linn Soc 84:79–89CrossRefGoogle Scholar
  10. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dufresnes C, Pellet J, Bettinelli-Riccardi S, Thiébaud J, Perrin N, Fumagalli L (2016) Massive genetic introgression in threatened northern crested newts (Triturus cristatus) by an invasive congener (T. carnifex) in Western Switzerland. Conserv Genet. doi:10.1007/s10592-016-0825-6 Google Scholar
  12. Excoffier L, Lischer HEL (2010) ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  13. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  14. Gallant D, Reid DG, Slough BG, Berteaux D (2014) Natal den selection by sympatric Arctic and red foxes on Herschel Island, Yukon, Canada. Polar Biol 37:333–345CrossRefGoogle Scholar
  15. Garroway CJ, Bowman J, Cascaden TJ, Holloway GL, Mahan CG, Malcolm JR, Steele MA, Turner G, Wilson PJ (2010) Climate change induced hybridization in flying squirrels. Glob Change Biol 16:113–121CrossRefGoogle Scholar
  16. Giménez MD, Panithanarak T, Hauffe HC, Searle JB (2016) Empirical demonstration of hybrid chromosomal races in house mice. Evolution 70:1651–1658CrossRefPubMedGoogle Scholar
  17. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  18. Graphodatsky AS, Yang F, O’Brien PCM, Serdukova N, Milne BS, Trifonov V, Ferguson-Smith MA (2000) A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution g-banding. Chromosome Res 8:253–263CrossRefPubMedGoogle Scholar
  19. Hailer F, Kutschera VE, Hallstroem BM, Klassert D, Fain SR, Leonard JA, Arnason U, Janke A (2012) Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage. Science 336:344–347CrossRefPubMedGoogle Scholar
  20. Hellborg L, Ellegren H (2003) Y chromosome conserved anchored tagged sequences (YCATS) for the analysis of mammalian male-specific DNA. Mol Ecol 12:283–291CrossRefPubMedGoogle Scholar
  21. Hersteinsson P, Macdonald D (1992) Interspecific competition and the geographical distribution of red and Arctic foxes Vulpes vulpes and Alopex lagopus. Oikos 64:505–515CrossRefGoogle Scholar
  22. Horn A, Basset P, Yannic G, Banaszek A, Borodin PM, Bulatova NS, Jadwiszczak K, Jones RM, Polyakov AV, Ratkiewicz M, Searle JB, Shchipanov NA, Zima J, Hausser J (2012) Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus). Evolution 66:882–889CrossRefPubMedGoogle Scholar
  23. Hubbard J, Uy J, Hauber M, Hoekstra H, Safran R (2010) Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet 26:231–239CrossRefPubMedGoogle Scholar
  24. Johnson JL, Kozysa A, Kharlamova AV, Gulevich RG, Perelman PL, Fong HWF, Vladimirova AV, Oskina IN, Trut LN, Kukekova AV (2015) Platinum coat color in red fox (Vulpes vulpes) is caused by a mutation in an autosomal copy of KIT. Anim Genet 46:190–199CrossRefPubMedGoogle Scholar
  25. Kelly B, Whiteley A, Tallmon D (2010) The Arctic melting pot. Nature 468:891CrossRefPubMedGoogle Scholar
  26. Kumar V, Kutschera VE, Nilsson MA, Janke A (2015) Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes. BMC Genomics 16:585CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kutschera VE, Lecomte N, Janke A, Selva N, Sokolov AA, Haun T, Steyer K, Nowak C, Hailer F (2013) A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes). BMC Evol Biol 13:114CrossRefPubMedPubMedCentralGoogle Scholar
  28. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  29. Librado P, Rozas J (2009) DnaSP ver. 5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  30. Liu S, Lorenzen Eline D, Fumagalli M, Li B, Harris K, Xiong Z, Zhou L, Korneliussen Thorfinn S, Somel M, Babbitt C, Wray G, Li J, He W, Wang Z, Fu W, Xiang X, Morgan Claire C, Doherty A, O’Connell Mary J, McInerney James O, Born Erik W, Dalén L, Dietz R, Orlando L, Sonne C, Zhang G, Nielsen R, Willerslev E, Wang J (2014) Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157:785–794CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lowe WH, Muhlfeld CC, Allendorf FW (2015) Spatial sorting promotes the spread of maladaptive hybridization. Trends Ecol Evol 30:456–462CrossRefPubMedGoogle Scholar
  32. Macdonald DW, Reynolds JC (2008) Vulpes Vulpes. The IUCN Red List of Threatened Species. Version 2014.3. http://www.iucnredlist.org. Accessed 7 May 2015
  33. Macdonald CA, Martin T, Ludkin R, Hussell DJT, Lamble D, Love OP (2012) First report of a Snow Bunting × Lapland Longspur hybrid. Arctic 65:344–348CrossRefGoogle Scholar
  34. MacPherson A (1964) A northward range extension of the red fox in the eastern Canadian Arctic. J Mammal 45:138–140CrossRefGoogle Scholar
  35. McKinnon JS, Pierotti MER (2010) Colour polymorphism and correlated characters: genetic mechanisms and evolution. Mol Ecol 19:5101–5125CrossRefPubMedGoogle Scholar
  36. Moore MS, Brown K, Sacks BN (2010) Thirty-one short red fox (Vulpes vulpes) microsatellite markers. Mol Ecol Resour 10:404–408CrossRefPubMedGoogle Scholar
  37. Muhlfeld CC, Kovach RP, Jones LA, Al-Chokhachy R, Boyer MC, Leary RF, Lowe WH, Luikart G, Allendorf FW (2014) Invasive hybridization in a threatened species is accelerated by climate change. Nat Clim Change 4:620–624CrossRefGoogle Scholar
  38. Nakagome S, Pecon-Slattery J, Masuda R (2008) Unequal rates of Y chromosome gene divergence during speciation of the family Ursidae. Mol Biol Evol 25:1344–1356CrossRefPubMedGoogle Scholar
  39. Norén K, Carmichael L, Fuglei E, Eide NE, Hersteinsson P, Angerbjorn A (2011) Pulses of movement across the sea ice: population connectivity and temporal genetic structure in the Arctic fox. Oecologia 166:973–984CrossRefPubMedGoogle Scholar
  40. Pamperin N, Follmann E, Petersen B (2006) Interspecific killing of an Arctic fox by a red fox at Prudhoe Bay, Alaska. Arctic 59:361–364Google Scholar
  41. Pamperin N, Follmann E, Person B (2008) Sea-ice use by Arctic foxes in northern Alaska. Polar Biol 31:1421–1426CrossRefGoogle Scholar
  42. Pauls SU, Nowak C, Balint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946CrossRefPubMedGoogle Scholar
  43. Payseur BA, Rieseberg LH (2016) A genomic perspective on hybridization and speciation. Mol Ecol 25:2337–2360CrossRefPubMedPubMedCentralGoogle Scholar
  44. Perini FA, Russo CAM, Schrago CG (2010) The evolution of South American endemic canids: a history of rapid diversification and morphological parallelism. J Evol Biol 23:311–322CrossRefPubMedGoogle Scholar
  45. Perrine JD, Pollinger JP, Sacks BN, Barrett RH, Wayne RK (2007) Genetic evidence for the persistence of the critically endangered Sierra Nevada red fox in California. Conserv Genet 8:1083–1095CrossRefGoogle Scholar
  46. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  47. Rambaut A (2014) FigTree ver. 1.4.2. http://tree.bio.ed.ac.uk/software/figtree/
  48. Rambaut A, Suchard MA, Xie W, Drummond A (2014) Tracer: MCMC Trace Analysis Tool, version 1.6.1. http://beast.bio.ed.ac.uk/Tracer
  49. Roca AL, Georgiadis N, O’Brien SJ (2005) Cytonuclear genomic dissociation in African elephant species. Nat Genet 37:96–100PubMedGoogle Scholar
  50. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  51. Roulin A (2004) The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol Rev 79:815–848CrossRefPubMedGoogle Scholar
  52. Statham MJ, Murdoch J, Janecka J, Aubry KB, Edwards CJ, Soulsbury CD, Berry O, Wang ZH, Harrison D, Pearch M, Tomsett L, Chupasko J, Sacks BN (2014) Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories. Mol Ecol 23:4813–4830CrossRefPubMedGoogle Scholar
  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis, version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tannerfeldt M, Elmhagen B, Angerbjörn A (2002) Exclusion by interference competition? The relationship between red and Arctic foxes. Oecologia 132:213–220CrossRefPubMedGoogle Scholar
  55. Tarroux A, Berteaux D, Bêty J (2010) Northern nomads: ability for extensive movements in adult Arctic foxes. Polar Biol 33:1021–1026CrossRefGoogle Scholar
  56. Tsubouchi A, Fukui D, Ueda M, Tada K, Toyoshima S, Takami K, Tsujimoto T, Uraguchi K, Raichev E, Kaneko Y, Tsunoda H, Masuda R (2012) Comparative molecular phylogeny and evolution of sex chromosome DNA sequences in the Family Canidae (Mammalia: Carnivora). Zool Sci 29:151–161CrossRefPubMedGoogle Scholar
  57. Våge DI, Lu DS, Klungland H, Lien S, Adalsteinsson S, Cone RD (1997) A non-epistatic interaction of agouti and extension in the fox, Vulpes vulpes. Nat Genet 15:311–315CrossRefPubMedGoogle Scholar
  58. Våge DI, Fuglei E, Snipstad K, Beheirn J, Landsem VM, Klungland H (2005) Two cysteine substitutions in the MC1R generate the blue variant of the Arctic fox (Alopex lagopus) and prevent expression of the white winter coat. Peptides 26:1814–1817CrossRefPubMedGoogle Scholar
  59. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49CrossRefPubMedGoogle Scholar
  60. Wilson DE, Mittermeier RA (eds) (2009) Handbook of the mammals of the world, vol. 1: carnivores. Lynx Edicions, BarcelonaGoogle Scholar
  61. Wisz MS, Broennimann O, Grønkjær P, Møller PR, Olsen SM, Swingedouw D, Hedeholm RB, Nielsen EE, Guisan A, Pellissier L (2015) Arctic warming will promote Atlantic-Pacific fish interchange. Nat Clim Change 5:261–265CrossRefGoogle Scholar
  62. Yannic G, Basset P, Hausser J (2008) A hybrid zone with coincident clines for autosomal and sex-specific markers in the Sorex araneus group. J Evol Biol 21:658–667CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratoire d’Écologie Alpine – UMR CNRS 5553Université Savoie Mont BlancLe Bourget-du-lacFrance
  2. 2.Canada Research Chair in Polar and Boreal Ecology and Centre d’Études Nordiques, Department of BiologyUniversité de MonctonMonctonCanada
  3. 3.Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, 248 CCAHUniversity of California, DavisDavisUSA
  4. 4.Department of EnvironmentGovernment of NunavutIgloolikCanada
  5. 5.IgloolikCanada
  6. 6.Department of Population Health and Reproduction, 4206 VM3AUniversity of CaliforniaDavisUSA

Personalised recommendations